• Title/Summary/Keyword: Weld penetration

Search Result 234, Processing Time 0.019 seconds

Weldability of Low Carbon Steel with Al Coating Condition by Nd:YAG Laser (저탄소강의 알루미늄 도금조건에 따른 Nd:YAG 레이저 용접성)

  • Kim, Jong-Do;Lee, Jung-Han;Kim, Sook-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.736-743
    • /
    • 2007
  • Laser welding has the advantage of high welding speed and Provides low heat distortion Thus laser welding is a very attractive process for joining thin steel sheet and surface treated steel sheet. And the major item in market for surface treated steel sheet is zinc coated steel. However. the laser welding of zinc coated steel is very difficult because of its low boiling point. Compared with zinc, on the other hand, aluminum has a high boiling point. Thus, laser weldability of aluminized steel is better than that of zinc coated steel. Moreover aluminized steel sheet is a material with excellent heat resistance, thermal reflection and corrosion resistance. The results of laser weldability of the aluminized steel for the full penetration welding will be described in this paper We focused on the investigation of the phenomenons caused by coating condition and behavior of aluminum in weld.

ButWelding Characteristics of SM45C and SUS 304 using a Nd:YAG laser (SM45C와 SUS304의 Nd:YAG 레이저 맞대기용접특성)

  • Yoo, Young-Tae;Ro, Kyoung-Bo;Shin, Ho-Jun;Kim, Ji-Hwan;Oh, Young-Seok
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1302-1308
    • /
    • 2003
  • Welding characteristics of austienite 304 stainless steel and SM45C using a continuous wave Nd:YAG laser are experimentally investigated. Laser beam welding is increasingly being used in welding of structural steels. The laser welding process is one of the most advanced manufacturing technologies owing to its high speed and deep penetration. This paper describes the weld ability of SM45C carbon steel and austienite 304 stainless steel for machine structural use by Nd:YAG laser.

  • PDF

Effect of Welding Variables for EBW Process in AISI 4130 by Taguchi Method (다구찌 방법을 이용한 AISI 4130재료에서 EBW공정의 용접 변수 영향)

  • Kim, Won-Hoon
    • Journal of Welding and Joining
    • /
    • v.15 no.6
    • /
    • pp.66-77
    • /
    • 1997
  • In the present work, Taguchi method for electron beam welding(EBW) process in AISI 4130 steel plate has been adopted for investigating the contribution of effect of welding variables. $A L_8(2^7)$ orthogonal array is adopted to obtain the effect of adjustment parameters. The adjustment parameters consist of accelerating voltage, beam current, travel speed and focus currrent. And the quality features selected for the EBW process are bead width of weldment, reinforcement, penetration depth, undercut and area of weld metal. Variance analysis is performed in order to check the effect of adjustment parameters on EBW. The mechanical properties of electron beam welded joints for each heat treatment conditions are investigated in comparison with those of base metal, especially from the view point of tensile and impact properties.

  • PDF

A Study on Sensitivity Analysis for Process Parameters in GMA Welding Processes

  • Kim, Ill-Soo;Park, Chang-Eun;An, Young-Ho;Park, Ju-Seog;Chon, Kwang-Suk;Jeong, Young-Jae
    • Proceedings of the KWS Conference
    • /
    • 2003.05a
    • /
    • pp.29-31
    • /
    • 2003
  • Generally, the Quality of a weld joint is strongly influenced by process parameters during the welding process. In order to achieve high quality welds, mathematical models that can predict the bead geometry to accomplish the desired mechanical properties of the weldment should be developed. To achieve this objectives, a sensitivity analysis has been conducted and compared the relative impact of three process parameters on bead geometry in order to verify the measurement errors on the values of the uncertainty in estimated parameters. The results obtained show that developed mathematical models can be applied to estimate the effectiveness of process parameters for a given bead geometry, and a change of process parameters affects the bead width and bead height more strongly than penetration relatively.

  • PDF

Control of Bead Geometry in GMAW (GMAW에서 비드형상제어에 관한 연구)

  • 이재범;방용우;오성원;장희석
    • Journal of Welding and Joining
    • /
    • v.15 no.6
    • /
    • pp.116-123
    • /
    • 1997
  • In GMA welding processes, bead contour and penetration patterns are criterion to estimate weld quality. Bead geometry is commonly defined with width, height and depth. When weaving is taken into account, selection of welding conditions is known to be difficult. Thus, empirical or trial-and-error method are usually introduced. This study examined the correlation of welding process variables including weaving parameters with bead geometry using srtificial neural networks(ANN). The main task of the Ann estimator is to realize the mapping characteristics from the sampled welding process variables to the actual bead geometry through training. After the neural network model is constructed, welding process variables for desired bead geometry is selected by inverse model. Experimental varification of the inverse model is conducted through actual welding.

  • PDF

Development of an algorithm for Controlling Welding Bead Using Infrared Thermography (적외선 카메라를 이용한 용접비드를 제어하기 위한 알고리즘 개발)

  • ;;;;;Y.Prasad
    • Journal of Welding and Joining
    • /
    • v.18 no.6
    • /
    • pp.55-61
    • /
    • 2000
  • Dynamic monitoring of weld pool formation and seam deviations using infrared vision is described in this paper. Isothermal contours representing heat dissipation characteristics during the process of arc welding were analysed and processed using imaging techniques. Maximum bead width and penetration were recorded and the geometric position in relation to the welding seam was measured at each sampling point. Deviations from the desired bead geometry and welding path were sensed and their thermographic representations were digitised and welding path were sensed and their thermographic representations were digitised and subsequently identified. Evidence suggested that infrared thermography can be utilized to compensate for inaccuracies encountered in real-time during robotic arc welding.

  • PDF

Study on the Welding Mode Transition Phenomena in Monitoring Plasma-MIG Hybrid Welding (Plasma-MIG 하이브리드 용접에서 용적 이행모드 현상 모니터링에 대한 연구)

  • Lee, Jong Jung;Park, Young Whan
    • Journal of Welding and Joining
    • /
    • v.35 no.3
    • /
    • pp.75-81
    • /
    • 2017
  • Recently in the welding field, the establishment of unmanned and automated systems are rapidly developing. Accurate interpretation of the welding phenomenon is applied a number of monitoring systems. In this paper, butt welding (6t) type I using Plasma-MIG welding was carried out. And we evaluated characteristics of the Al-5083 aluminium alloy in Plasma-MIG hybrid welding. Process variables including the plasma current, MIG voltage, wire feeding rate and the welding speed were used. Butt welding was conducted 1 pass. Argon gas was used as the protective gas that results from the experiment were able to achieve full penetration. In addition to monitoring the welding process occurring during MIG welding current, welding votage and Plasma current, voltage were collected in real time, the photodiode and CCD cameras observing the phenomenon that the welding is in progress were measured using a quantity of light.

An Investigation of Laser Welding Characteristics for Attachments of Zircaloy-4 Bearing Pads of Nuclear Fuel Elements (핵연료봉 지르칼로이-4 지지체부착을 위한 레이저용접부의 특성 조사)

  • 김수성;이성구;이영호
    • Journal of Welding and Joining
    • /
    • v.20 no.1
    • /
    • pp.41-46
    • /
    • 2002
  • A new laser welding system far the appendage of bearing pads of PHWR nuclear fuel elements has been developed. This system consists of laser oscillator, a optical fiber transmission, a monitoring device and a welding controller. The basic welding experiments of the appendage of Zircaloy-4 bearing pads were carried out. The laser welded samples were investigated and made by using the optical fiber of GI $400\mu\textrm{m}$. As a result, the seam welding with the bead width of 1.0mm and the weld penetration of 0.3mm could be accomplished.

Korean Round-Robin Tests Result for New International Program to Assess the Reliability of Emerging Nondestructive Techniques

  • Kim, Kyung Cho;Kim, Jin Gyum;Kang, Sung Sik;Jhung, Myung Jo
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.651-661
    • /
    • 2017
  • The Korea Institute of Nuclear Safety, as a representative organization of Korea, in February 2012 participated in an international Program to Assess the Reliability of Emerging Nondestructive Techniques initiated by the U.S. Nuclear Regulatory Commission. The goal of the Program to Assess the Reliability of Emerging Nondestructive Techniques is to investigate the performance of emerging and prospective novel nondestructive techniques to find flaws in nickel-alloy welds and base materials. In this article, Korean round-robin test results were evaluated with respect to the test blocks and various nondestructive examination techniques. The test blocks were prepared to simulate large-bore dissimilar metal welds, small-bore dissimilar metal welds, and bottom-mounted instrumentation penetration welds in nuclear power plants. Also, lessons learned from the Korean round-robin test were summarized and discussed.

Study on Optimal Welding Conditions for Underframe of Railway Vehicles (철도차량 하부구조의 적정 용접조건에 관한 연구)

  • Jung, Sang-Ho;Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.4
    • /
    • pp.1-7
    • /
    • 2021
  • In this study, MIG welding was performed on extruded 6005A-T6 material, which is used in the base panel of railway vehicles. The material was considered as the experimental base material, and argon shielding gas and ER5356 and ER4043 filler metals were used as the consumable welding materials. Welding coupons were prepared under various welding conditions by using an auto-welding system that various welding conditions applied 2.5Hz and 4.5Hz the pulse frequency of SynchroPuls function of welding machine and 1.0mm and 1.5mm of root face affect the weld penetration of welding joint. The welding current and voltage were also varied for this testing. On the basis of the results obtained, optimum welding conditions are proposed.