• Title/Summary/Keyword: Weld defects

Search Result 299, Processing Time 0.025 seconds

A STUDY ON THE FORMATION OF IMPERFECTIONS IN CW $CO_2$ LASER WELD OF DIAMOND SAW BLADE

  • Minhyo Shin;Lee, Changhee;Kim, Taiwoung;Park, Heedong
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.639-643
    • /
    • 2002
  • The main purpose of this study was to investigate the formation mechanisms of imperfections such as irregular humps, outer cavity and inner cavity in the laser fusion zone of diamond saw blade. Laser beam welding was conducted to join two parts of blade; mild steel shank and Fe-Co-Ni sintered tip. The variables were beam power and travel speed. The microstructure and elements distributions of specimens were analyzed with SEM, AES, EPMA and so on. It was found that these imperfections were responded to heat input. Irregular humps were reduced in 10.4∼17.6kJ/m heat input range. However there were no clear evidences, which could explain the relations between humps formation and heat input. The number of outer cavity and inner cavity decreased as heat input was increased. Considering both possible defects formations mechanisms, it could be thought that outer cavity was caused by insufficient refill of keyhole, which was from rapid solidification of molten metal and fast molten metal flow to the rear keyhole wall at low heat input. More inner cavities were found near the interface of the fusion zone and sintered segment and in the bottom of the fusion zone. Inner cavity was mainly formed in the upper fusion zone at high heat input whereas was in the bottom at low heat input. Inner cavity was from trapping of coarsened preexist pores in the sintered tip and metal vapor due to rapid solidification of molten metal before the bubbles escaped.

  • PDF

ELECTROSLAG STRIP OVERLAY OF PIPE, FITTINGS, AND PRESSURE VESSELS

  • Dan, Capitanescu
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.355-360
    • /
    • 2002
  • ElectroSlag Strip Overlaying (ESSO) process has been around since 1970. ESSO process had limited acceptance due to a few problems associated with the use of this process in its very early stage. Limited knowledge and, most significantly, poor quality of the equipment and welding flux gave the ESSO process a bad name. However, this process is well accepted today and used in North America, Europe and Japan. The ESSO process provides low dilution overlays at high deposition rates, excellent and consistent deposit chemistry with excellent surface quality, and virtually no defects. Capitan has taken this process one step further through extensive research and development of the process itself as well as the equipment. The improvement brought to the process warranted the issuance in May 2000 of an US patent. This study demonstrates the feasibility of this process with immediate positive production results. The main achievements of this work are as follows: $\textbullet$ Development of six various strip-flux combinations on three different base materials: carbon steel, $\frac{1}{4}$ Cr/.5 Mo and 2 $\frac{1}{4}$ Cr/l Mo, fully tested with: penetrant, ultrasound, bends, hardness, overlay chemistry, corrosion and hydrogen disbonding. $\textbullet$ 12" dia. 90 hot formed elbows from straight pipe electroslag overlayed with "1 layer" and "2 layer" Alloy 625 $\textbullet$ a very unique development of miniaturized overlaying equipment able to perform overlay in pipe with diameters as low as 10" (254 mm). This development has large applications in the field of offshore, petrochemical, refining, pulp and paper and power generation industries. The aftermath of this development was its immediate acceptance by major end users with the completion of four projects of overlayed pipe in the USA and Far East Asia.

  • PDF

Butt Weldability of Shipbuilding Steel AH36 Using Laser-Arc Hybrid Welding (조선용 강판 AH36의 레이저-아크 하이브리드 용접시 맞대기 용접 특성)

  • Kim, Jong Do;Myoung, Gi Hoon;Suh, Jung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.10
    • /
    • pp.901-906
    • /
    • 2016
  • The purpose of this study is to improve productivity by implementing one-pass full penetration welding using laser-arc hybrid welding for AH36. On increasing the thickness of the plate, a higher power of laser and arc was required to obtain full penetration. However, increasing the power of heat source caused undercut defects at both ends of the bead. This undercut was prevented by controlling the parameters of welding voltage and pulse correction. Hardness measurement and tensile test were conducted to apprehend the mechanical properties of weld. Also, by carrying out the microstructure observation for laser and arc regions, microstructural properties were understood.

Butt Weldability for SS400 Using Laser-Arc Hybrid Welding (레이저-아크 하이브리드 용접을 이용한 SS400의 맞대기 용접 특성)

  • Kim, Jong Do;Myoung, Gi Hoon;Park, In Duck
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.7
    • /
    • pp.667-672
    • /
    • 2016
  • This study presents results of an experimental investigation of the laser-arc, hybrid, butt welding process of SS400 structural steel. Welding parameters including laser power, welding current and speed were varied in order to obtain one-pass, full-penetration welds without defects. The conditions that resulted in optimal beads were identified. After welding, hardness measurements and microstructure observations were carried out in order to study weld properties. The mechanical properties of both the base material and welded specimen were compared based on the results of tensile strength measurements. The yield and tensile strengths were found to be similar.

Eddy Current Testing of Weldment by Plus(+) Point Probe (Plus(+) Point Probe를 이용한 용접부 와전류검사)

  • Lee, Hee-Jong;Kim, Yong-Sik;Nam, Mim-Woo;Yoon, Byung-Sik;Kim, Seok-Kon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.6
    • /
    • pp.426-432
    • /
    • 1999
  • A plus-point eddy current test(ECT) probe was developed to examine the defects on the welds of pumps, valves, and pipings which are the major components of the electric power plants, non-destructive evaluation (NDE) techniques for detecting and sizing the flaws were studied adapting this probe. Differential plus-point ECT probe is consists of two "I"-type coils crossed each other and has an advantage having a small influence on the sensitivity by lift-off variation to the conventional types of probe. The specimens with crack-like electro discharge machining(EDM) notches on the weld of type 304 stainless-steel were fabricated in order to evaluate the plus-point ECT probe response to the flaws. NDE techniques to detect and size the flaws and estimate the flaw type were established with this specimens.

  • PDF

Analysis of the Effect on the Process Parameters for the Thin Ceramic Plate in the Ceramic Injection Molding (판상제품의 세라믹 사출 시 공정변수 영향 분석)

  • Kim, Jinho;Hong, Seokmoo;Hwang, Jihoon;Lee, Jongchan;Kim, Naksoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.2587-2593
    • /
    • 2014
  • Ceramic Injection Molding (CIM) is one of wide used processes in industry field and the applications are gradually being expanded to parts of medical and electric devices. In this study, the CIM process were analyzed with FEM and process parameters were studied and analyzed the effect on product quality. The shape of simple flat plate was compared to the shapes with the hole, with the round corner portion or with the side wall portion. If there are holes then the hole around the uneven density distribution and the defects such as weld lines could be occurred. The Large radius of the corners of the product give good formability and fluidity. Not only the shape parameters of product but also the process parameters during CIM are studied. The simulation results showed that the process parameters of temperature, initial fractions and velocity are important design parameters to improve the quality of products.

A Study on the Arc Position which Influence on Quality of Plug Welding in the Vehicle Body (차체 플러그 용접품질에 영향을 미치는 아크 위치에 대한 실험적 기초 연구)

  • Lee, Kyung-Min;Kim, Jae-Seong;Lee, Bo-Young
    • Journal of Welding and Joining
    • /
    • v.30 no.3
    • /
    • pp.66-70
    • /
    • 2012
  • Welding is an essential process in the automotive industry. Most welding processes that are used for auto body is spot welding. And $CO_2$ arc welding is used in a small part. In production field, $CO_2$ arc welding process is decreased and spot welding process is increased due to welding quality is poor and defects are occurred in $CO_2$ arc welding process frequently. But $CO_2$ arc welding process should be used at robot interference parts and closed parts where spot welding couldn't. $CO_2$ welding is divided into lap welding and plug arc spot welding. In case of plug arc spot welding, burn through and under fill were caused in various welding environment such as different thickness combinations of base metal, teaching point, over the two steps welding and inconsistent voltage/current. It makes some problem like poor quality of welding area and decrease the productivity. In this study, we will evaluate the effect of teaching point through the weld pool behavior and bead geometry in the arc spot welding at the plut hole. Welding position is horizontal position. And galvanized steel sheet of 2.0mm thickness that has plug hole of 6mm diameter was used. Teaching point was changed by center, top, bottom, left and right of the plug hole. At each condition, the phenomenon of weld pool behavior was confirmed using a high-speed camera. As the result, we find the center of plug hole is the most optimal teaching point. In the other teaching point, under fill was occurred at the plug hole. This phenomenon is caused by gravity and surface tension. For performance of arc spot welding at the plug hole, the teaching condition should be controlled at a center of plug hole.

A Study on the Formation of Imperfections in CW $CO_2$Laser Weld of Diamond Saw Blade

  • Shin, M.;Lee, C.;Kim, T.;Park, H.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.1
    • /
    • pp.21-24
    • /
    • 2002
  • The main purpose of this study was to investigate the formation mechanisms of imperfections such as irregular humps, outer cavity and inner cavity in the laser fusion zone of diamond saw blade. Laser beam welding was conducted to join two parts of blade; mild steel shank and Fe-Co-Ni sintered tip. The variables were beam power and travel speed. The microstructure and elements distributions of specimens were analyzed with SEM, AES, EPMA and so on. It was found that these imperfections were responded to heat input. Irregular humps were reduced in 10.4∼l7.6kJ/m heat input range. However there were no clear evidences, which could explain the relations between humps formation and heat input. The number of outer cavity and inner cavity decreased as heat input was increased. Considering both possible defects formations mechanisms, it could be thought that outer cavity was caused by insufficient refill of keyhole, which was from rapid solidification of molten metal and fast molten metal flow to the rear keyhole wall at low heat input. More inner cavities were found near the interface of the fusion zone and sintered segment and in the bottom of the fusion zone. Inner cavity was mainly formed in the upper fusion zone at high heat input whereas was in the bottom at low heat input. Inner cavity was from trapping of coarsened preexist pores in the sintered tip and metal vapor due to rapid solidification of molten metal before the bubbles escaped.

  • PDF

A Study on the Development of Diagnosing System of Defects on Surface of Inner Overlay Welding of Long Pipes using Liquid Penetrant Test (PT를 이용한 파이프내면 육성용접부 표면결함 진단시스템 개발에 관한 연구)

  • Lho, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.121-127
    • /
    • 2018
  • A system for diagnosing surface defects of long and large pipe inner overlay welds, 1m in diameter and 6m in length, was developed using a Liquid Penetrant Test (PT). First, CATIA was used to model all major units and PT machines in 3-dimensions. They were used for structural strength analysis and strain analysis, and to check the motion interference phenomenon of each unit to produce two-dimensional production drawings. Structural strength analysis and deformation analysis using the ANSYS results in a maximum equivalent stress of 44.901 MPa, which is less than the yield tensile strength of SS400 (200 MPa), a material of the PT Machine. An examination of the performance of the developed equipment revealed a maximum travel speed of 7.2 m/min., maximum rotational speed of 9 rpm, repeatable position accuracy of 1.2 mm, and inspection speed of $1.65m^2/min$. The results of the automatic PT-inspection system developed to check for surface defects, such as cracks, porosity, and undercut, were in accordance with the method of ASME SEC. V&VIII. In addition, the results of corrosion testing of the overlay weld layer in accordance with the ferric chloride fitting test by the method of ASME G48-11 indicated that the weight loss was $0.3g/m^2$, and met the specifications. Furthermore, the chemical composition of the overlay welds was analyzed according to the method described in ASTM A375-14, and all components met the specifications.

Effect of tack of Fusion Defects on Short-Term Performance of Polyethylene Electrofusion Joints (폴리에틸렌 배관 전기융착부 단기성능 평가를 위한 융합물량 영향 평가)

  • Kil, Seong-Hee;Kwon, Jeong-Rock;Jo, Ji-Hwan
    • Journal of Energy Engineering
    • /
    • v.14 no.2 s.42
    • /
    • pp.153-158
    • /
    • 2005
  • In order to investigate the short-term performance of polyethylene electrofusion joints, the mechanical tests and stress analysis have been conducted to the artificially defected weld joints. The defects of lack of fusion with a square-type were fabricated with 10, 20, 30, 40, 50, 60$\%$ size of the width of heat-ing wire zone, respectively. In this defect sires range, both tensile and bending test results showed the dependence of defect size to the electrofusion joints performance, but both sustained pressure and crush test results didn't. The numerical stress analysis results including the soil and internal pressures, tensile and bend-ing stresses clearly showed the dependence of fusion defect size. Based on both mechanical test and stress analysis results, the maximum acceptable defect size in polyethylene electrofusion joints is discussed.