• 제목/요약/키워드: Weld bead

검색결과 375건 처리시간 0.033초

탄뎀 가스메탈아크 용접공정의 최적화에 관한 실험적 연구 (An Experimental Study on Optimizing for Tandem Gas Metal Arc Welding Process)

  • 이종표;김일수;이지혜;박민호;김영수;박철균
    • Journal of Welding and Joining
    • /
    • 제32권2호
    • /
    • pp.22-28
    • /
    • 2014
  • To enhance productivity and provide high quality production material in a GMA welding process, weld quality, productivity and cost reduction affects the number of process variables. In addition, a reliable welding process and conditions must be implemented to reduce weld structure failure. In various industries the welding process mathematical model is not fully formulated for the process parameter and on the welding conditions, therefore only partial variables can be predicted. The research investigates the interaction between the welding parameters (welding speed, distance between electrodes, and flow rate of shielding gas) and bead geometry for predicting the weld bead geometry (bead width, bead height). Taguchi techniques are applied to bead shape to develope curve equation for predicting the optimized process parameters and quality characteristics by analyzing the S/N ratio. The experimental results and measured error is within the range of 10% presenting satisfactory accuracy. The curve equation was developed in such a way that you can predict the bead geometry of constructed machinery that can be used for making tandem welding process.

표면 비드높이 예측을 위한 최적의 신경회로망의 적용에 관한 연구 (A Study of the Application of Neural Network for the Prediction of Top-bead Height)

  • 손준식;김일수;박창언;김인주;김학형;서주환;심지연
    • 한국공작기계학회논문집
    • /
    • 제16권4호
    • /
    • pp.87-92
    • /
    • 2007
  • The full automation welding has not yet been achieved partly because the mathematical model for the process parameters of a given welding task is not fully understood and quantified. Several mathematical models to control welding quality, productivity, microstructure and weld properties in arc welding processes have been studied. However, it is not an easy task to apply them to the various practical situations because the relationship between the process parameters and the bead geometry is non-linear and also they are usually dependent on the specific experimental results. Practically, it is difficult, but important to know how to establish a mathematical model that can predict the result of the actual welding process and how to select the optimum welding condition under a certain constraint. In this paper, an attempt has been made to develop an neural network model to predict the weld top-bead height as a function of key process parameters in the welding. and to compare the developed models using three different training algorithms in order to select an adequate neural network model for prediction of top-bead height.

이면비드를 가진 마찰교반용접에 대한 피로강도에 관한 연구 (Friction stir welding with back-bead to improve fatigue strength)

  • ;윤병현;김흥주;김특기;천창근;장웅성
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2007년 추계학술발표대회 개요집
    • /
    • pp.17-19
    • /
    • 2007
  • The fatigue experiments of friction stir welded Al-6061-T6 alloy with and with out back bead were performed to investigate the variation in fatigue strength and life of the Joint. It was found that there were always existed flaws at the roots of friction stir welds for the normal welding parameters and clamping conditions. In order to overcome this root flaws, friction stir welds with optimum back bead has been developed. The test results with root flaws and with back bead were compared. The fatigue life of weld with root flaws was 5-10 times shorter than that of the friction stir weld with back bead.

  • PDF

적외선센서를 이용한 용접품질 제어에 관한 연구 (A Study on the Control of the Welding Quality Using a Infrared sensor)

  • 김일수;손준식;김학형;서주환;김인주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.754-758
    • /
    • 2005
  • Optimization of process variables such as arc current, welding voltage and welding speed in terms of the weld characteristics desired is the key step in achieving high quality and improving performance characteristics without increasing the cost. Consequently, incorrect settings of those process variables give rise to deviations in the welding characteristics from the desired bead geometry. Therefore, trainee welders are referred to the tabulated information relating different metal types and thickness as to recommend the desired values of process variables. Basically, the bead geometry plays an important role in determining the mechanical properties of the weld. So that it is very important to select the process variables for obtaining optimal bead geometry. However, it is difficult for the traditional identification methods to provide an accurate model because the optimized welding process is non-linear and time-dependent. In this paper, the possibilities of the Infra-red sensor in sensing and control of the bead geometry in the automated welding process are presented. Infra-red sensor is a well-known method to deal with the problems with a high degree of fuzziness so that the sensor is employed to build the relationship between process variables and the quality characteristic the proposed above respectively. Based on several neural networks, the mathematical models are derived from extensive experiments with different welding parameters and complex geometrical features. The developed system enables to select the optimal welding parameters and control the desired weld dimensions during arc welding process.

  • PDF

용접지단부 TIG처리에 의한 피로강도향상 및 피로특성 (Fatigue Strength Improvement and Fatigue Characteristics by TIG-Dressing on Weld Bead Toes)

  • 정영화;김익겸;남왕현;장동휘
    • 산업기술연구
    • /
    • 제20권A호
    • /
    • pp.169-178
    • /
    • 2000
  • The 4-point bending tests have been performed In order to estimate the effect of TIG-dressing on fatigue strength and fatigue characteristics quantitatively for non load-carrying fillet welded joints subjected to pure bending. As a result of fatigue tests, fatigue strengths of as-welded specimens have satisfied the grade of fatigue strength prescribed in specifications of korea, AASHTO and JSSC. Fatigue strength at 2 million cycles of TIG-dressing specimens have increased compared with as-welded specimens. As the result of beachmark tests, fatigue cracks occurred at several points, where the radius of curvature and flank angle in the weld bead toes were low, and grew as semi-elliptical cracks, then approached to fracture. As a result of finite element analysis, stress concentration factor in weld bead toes has closely related to the flank angle and radius of curvature, and between these, the radius of curvature has more largely affected in stress concentration factor than flank angle. As a result of fracture mechanics approaches, the crack correction factor of test specimens has largely affected on stress gradient correction factor in case a/t is below 0.4. From the relations between stress intensity factor range estimated from FEM analysis and fatigue crack growth rate, fatigue life has been correctly calculated.

  • PDF

하이드로포밍용 열연 강재의 레이저 용접성 및 성형 특성 (Laser Weldability and Formability of Hot Rolled Steels for Hydroforming Applications)

  • 이원범;이종봉
    • Journal of Welding and Joining
    • /
    • 제22권6호
    • /
    • pp.19-24
    • /
    • 2004
  • The laser welding and its analysis of thin-sheet carbon steels were carried out with high power $CO_{2}$ laser. The main factor of weld quality of laser welding is gap and edge quality. This work was preformed to focus on the gap tolerance problem during laser welding. First, bead on plate welding of thin sheet was examined to investigate the effect of laser welding variables, and to obtain optimum welding condition. Butt welding was also carried out to show the effect of gap on the laser weldability of thin sheet. In order to investigate the effect of gap on formability of welded thin sheet, LDH test was caried out. At high welding speed, the partial penetration was obtained by low heat input. Otherwise, porosity was formed in the bead at low weld speed because of too much heat input. The optimum welding condition of welding was derived from bead width, penetration and hardness property. The maximum gap tolerance on laser welding was observed to be about 0.2mm. This gap size has good relationship with beam size of laser spot(about 0.3mm). The formability of welded sheet was about $80{\%}$ value of base metal and the gap size has not affected on the formability, although weld quality is dependent on the gap size.

SAW 용접시 다중 토치를 이용한 용접부 적응제어에 관한 연구 (A Study on Adaptive Control to Fill Weld Groove by Using Multi-Torches in SAW)

  • 문형순;정문영;배강열
    • Journal of Welding and Joining
    • /
    • 제17권6호
    • /
    • pp.90-99
    • /
    • 1999
  • Significant portion of the total manufacturing time for a pipe fabrication process is spent on the welding following primary machining and fit-up processes. To achieve a reliable weld bead appearance, automatic seam tracking and adaptive control to fill the groove are urgently needed. For the seam tracking in welding processes, the vision sensors have been successfully applied. However, the adaptive filling control of the multi-torches system for the appropriate welded area has not been implemented in the area of SAW(submerged arc welding) by now. The term adaptive control is often used to describe recent advances in welding process control by strictly this only applies to a system which is able to cope with dynamic changes in system performance. In welding applications, the term adaptive control may not imply the conventional control theory definition but may be used in the more descriptive sense to explain the need for the process to adapt to the changing welding conditions. This paper proposed various types of methodologies for obtaining a good bead appearance based on multi-torches welding system with the vision system in SAW. The methodologies for adaptive filling control used welding current/voltage, arc voltage/welding current/wire feed speed combination and welding speed by using vision sensor. It was shown that the algorithm for welding current/voltage combination and welding speed revealed sound weld bead appearance compared with that of voltage/current combination.

  • PDF

Effect of Melting Pool on the Residual Stress of Welded Structures in Finite Element Analysis

  • Lee, Jang-Hyun;Hwang, Se-Yun;Yang, Yong-Sik
    • Journal of Ship and Ocean Technology
    • /
    • 제11권3호
    • /
    • pp.14-23
    • /
    • 2007
  • Welding processes cause undesirable problems, such as residual stresses and deformations due to the thermal loads imposed by local heating, melting, and cooling processes. This paper presents a computational modeling technique to simulate the Gas Metal Arc Welding (GMAW) process, emphasizing the effect of the melting bead on the residual stress distribution. Both a three-bar analogy and a three-dimensional thermo-mechanical finite element analysis are carried out in order to explain the effect. Element (de)activation, enthalpy, and adjustment of the reference temperature of thermal strain are considered with respect to the effect of the weld filler metal added to the base metal during a thermo-elastic-plastic analysis. Stress distributions obtained by the present study are compared with measured values and available data from other studies. The effect of the melting bead on the residual stress distribution is discussed and demonstrated.

GMA 용접에 온도분포와 비드형상에 관한 연구 (A Study on Temperature Distribution and Bead Geometry in GMA Welding)

  • 김일수;박창언;송창재;정영재;김동규
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 춘계학술대회 논문집
    • /
    • pp.111-116
    • /
    • 1999
  • Over the last few years, there has been a growing interest in quantitative representation of heat transfer and fluid flow phenomena in weld pools in order to relate the processing conditions to the quality of the weldment produced and to use this information for the optimization and robotization of the welding process. Normally, a theoretical model offers a powerful alternative to estimate the important input parameters and to calculate the effects of varying any of parameters. To solve this problem, a transient 2D(two-dimensional) heat conduction and a transient 2D axisymmetric heat and fluid model were developed for determining weld bead geometry and temperature distribution for the GMA(Gas Metal Arc) welding process. The equation was solved using a general thermofluid-mechanics computer program, PHOENICS code, which is based on the SIMPLE algorithm. The simulation results showed that the calculated bead geometry from two developed models reasonably agree with the experiment result.

  • PDF

용접연결부의 실제 비드형상을 고려한 노치피로해석법 (Notch Fatigue Analysis Based on the Actual Bead Shape of Welded Joint)

  • 양박달치;박치모
    • 대한조선학회논문집
    • /
    • 제46권4호
    • /
    • pp.417-423
    • /
    • 2009
  • This paper is concerned with the fatigue behaviour of welded joints by the notch stress approach. The actual welded shape is complex and 3-dimensional that may influence greatly the fatigue strength. The purpose of the paper is to present a way of modelling the actual weld bead shape by using a 3-D Laser scanner for experimental models of steel plates with longitudinal fillet welds, and applying its results to a proper notch stress method for the fatigue strength. The present approach to assess the fatigue strength is quite promising with application to a variety of welded joints and effects of weld profiling to fatigue strength.