• Title/Summary/Keyword: Weld Strength

Search Result 857, Processing Time 0.031 seconds

An Experimental Study on Friction Welding and Heat Treatment of Engine Exhaust Valve Steels ( SCr4-21-4 N , SUH3-21-4-N (기관배기 밸브용 강 ( SCr4-21-4N , SUH3-21-4N ) 의 마찰압접과 열처리에 관한 실험적 연구)

  • 오세규
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.14 no.2
    • /
    • pp.79-87
    • /
    • 1978
  • This is an experimental study on friction welding and heat treatment of engine exhaust valve materials whose welding combination is SCr4 as stem to 21-4N as head and SUH3 to 21-4N. In this study, not only the experiments of friction welding under the selected optimum welding condition and the examination of the mechanical properties were carried out, but also the heat treatment of friction welded specimens under the two selected conditions was taken to obtain the better welding character, eliminating the latent stress and the hardness peak which appeared at the welded zones of heat resisting steel(21-4N, SUH3) and low alloyed steel ($SCr_4$) friction weldments. The results obtained by the experiments and consideration in this study are as follows: I) It was experimentally proved quite reasonable that 'speed=3,OOO rpm, heating pressure Pl=8 kg/ mm2, upsetting pressure p, = 20 kg/mm', heating time $t_1$ = 3 see, upsetting time TEX>$t_2$ = 2.5 sec' was selected as the optimum welding condition for friction-welding the engine exhaust valve materials $SCr_4$ to 21-4 Nand SUH 3 to 21-4 N. 2) The results of the previous study and this one on friction welding of such dissimilar materials as SUH 3-SUH 31, SCr 4-SUH 31, SCr 4-SUH 3, SUH 3-CRK 22, SCr4-21-4 Nand SUH3-21-4 N agreed with each other substantially in the friction welding characteristics at welded interface zones. 3) It was also certified quite satisfactory that '600\ulcornerCX30 min. Xroom air cooling' as an optimum heat treatment condition of the friction welded materials SCr 4-21-4 Nand SUH 3-21-4 N was experimentally determined to eliminate the latent stress and the hardness peak at welded zones. 4) About 20% of the tensile strength before heat treatment of friction welded specimens was decreased after heat treatment 600\ulcornerCX30 min. Xair cooling, but the location of fracture was moved from heat affected zone to parent $SCr_4$ & SUH3. 5) Microscopic examination of the weld joints friction-welded and heat-treated under the above mentioned conditions revealed that the weld zone is very narrow and has a fine grained intermixed structure without any welding defects. 6) The above mentioned conditions can be also utilized as friction welding parameters of the other dissimiar materials for engine valve production.

  • PDF

Structural Evaluation Method to Determination Safe Working Load of Block Handling Lugs (블록 이동용 러그의 안전사용하중 결정에 관한 구조 평가법)

  • O-Hyun Kwon;Joo-Shin Park;Jung-Kwan Seo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.4
    • /
    • pp.363-371
    • /
    • 2023
  • To construct a ship, blocks of various sizes must be moved and erected . In this process, lugs are used such that they match the block fastening method and various functions suitable for the characteristics of each shipyard facility. The sizes and shapes of the lugs vary depending on the weight and shape of the block structures. The structure is reinforced by welding the doubling pads to compensate for insufficient rigidity around the holes where the shackle is fastened. As for the method of designing lugs according to lifting loading conditions, a simple calculation based on the beam theory and structural analysis using numerical modeling are performed. In the case of the analytical method, a standardized evaluation method must be established because results may differ depending on the type of element and modeling method. The application of this ambiguous methodology may cause serious safety problems during the process of moving and turning-over blocks. In this study , the effects of various parameters are compared and analyzed through numerical structural analysis to determine the modeling conditions and evaluation method that can evaluate the actual structural response of the lug. The modeling technique that represents the plate part and weld bead around the lug hole provides the most realistic behavior results. The modeling results with the same conditions as those of the actual lug where only the weld bead is connected to the main body of the lug, showed a lower ulimated strength compared with the results obtained by applying the MPC load. The two-dimensional shell element is applied to reduce the modeling and analysis time, and a safety working load was verified to be predicted by reducing the thickness of the doubling pad by 85%. The results of the effects of various parameters reviewed in the study are expected to be used as good reference data for the lug design and safe working load prediction.

Cyclic Loading Tests of Concrete-Filled Composite Beam-Column Connections with Hybrid Moment Connections (복합모멘트접합을 갖는 콘크리트 충전 보-기둥 합성접합부의 반복하중 실험)

  • Lim, Jong Jin;Kim, Dong Gwan;Lee, Sang Hyun;Lee, Chang Nam;Eom, Tae Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.5
    • /
    • pp.345-354
    • /
    • 2016
  • In the present study, hybrid moment connections of welding and bar reinforcement for composite beam-column connections were proposed. Concrete-filled octagonal tube and U-section were used for the column and beam, respectively. In the beam-column connection, the top flange and web of the beam U-section were connected to the column plate by welding. However, to reduce stress concentration at the weld joints, the bottom flange of the beam was not welded to the column plate. Instead, to transfer the tension force of the beam flange, reinforcing bars passing through the column plate were used. Four exterior connections with conventional welded and hybrid moment connections were tested under cyclic loading and their cyclic behaviors were investigated. The test results showed that the hybrid moment connections successfully transferred the beam moment to the column. The strength and ductility of the hybrid moment connections were comparable to the conventional welded moment connection with exterior diaphragm; however, the connection performance was significantly affected by the details of the hybrid moment connection.

A Shape Control of Welded Joints to Improve Fatigue Strength (피로강도 향상을 위한 용접이음부의 형상제어에 관한 연구)

  • Kang, Chang Ib;Kook, Seung Kyu;Lee, Dong Uk
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.4 s.71
    • /
    • pp.479-492
    • /
    • 2004
  • When U-ribs of steel deck plates are connected at the field, overhead welding should be done with backing strips. Misalignments may occur and lead to eccentric moments as well as high stress concentrations at welded joints. In this study, stress analyses and fatigue tests were carried out. Stress analyses for U-ribs' welded joints with backing strips were performed with different misalignments, root shapes, root gaps, and backing strip sizes. From the stress analyses, the stress concentration factors increased with increasing misalignments and root gaps. With the fixed misalignments and root gaps, the stress concentration factors obtained in the case of the semi-circle root shape were lower than those in the case of the right-angle root shape. It was verified that backing strip sizes have little influence on stress concentration factors. The fatigue tests for U-ribs' welded joints with backing strips indicated that increased misalignments shorten fatigue life drastically and cracks usually initiate at the root of the base metal and are propagated to the weld bead surface. Based on the results of the stress analyses, root-shape control methods were developed to mitigate stress concentration by changing welding condition control, radius curvature, and flank angle.

Generation Rate and Content Variation of Manganese in Stainless Steel Welding (스테인레스 강 용접중 발생하는 망간의 발생량 및 함량변화에 관한 연구)

  • Yoon, Chung Sik;Kim, Jeong Han
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.3
    • /
    • pp.254-263
    • /
    • 2006
  • Manganese has a role as both toxic and essential in humans. Manganese is also an essential component in the welding because it increases the hardness and strength, prevents steel from cracking of welding part and acts as a deoxidizing agent to form a stable weld. In this study, manganese generation rate and its content was determined in flux cored arc welding on stainless steel. Domestic two products and foreign four products of flux cored wires were tested in the well designed fume generation chamber as a function of input power. Welding fume was measured by gravimetric method and metal manganese was determined by inductively coupled plasma-atomic emission spectrophotometer. The outer shell of the flux cored wire tube and inner flux were analyzed by scanning electron microscopy to determine their metal compositions. Manganese generation rate($FGR_{mn}$) was increased as the input power increased. It was 16.3 mg/min at the low input power, 38.1 mg/min at the optimal input power, and up to 55.4 mg/min at the high input power. This means that $FGR_{mn}$ is increased at the work place if welder raise the current and/or voltage for the high productivity. The slope coefficient of $FGR_{mn}$ was smaller than that of the generation rate of total fume(FGR). Also, the correlation coefficient of $FGR_{mn}$ was 0.65 whereas that of FGR is 0.91. $FGR_{mn}$ was equal or higher in the domestic products than that of the foreign products although FGR was similar. From the electron microscopic analytical data, we concluded that outer shell of the wire was composed mainly of iron, chromium, nickel and less than 1.2 % of manganese. There are many metal ingredients such as iron, silica, manganese, zirconium, titanium, nickel, potassium, and aluminum in the inner flux but they were not homogeneous. It was found that both $FGR_{mn}$ and content of manganese was higher and more varied in domestic flux cored wires than those of foreign products. To reduce worker exposure to fumes and hazardous component at the source, further research is needed to develop new welding filler materials that improve the quality of flux cored wire in respect to these points. Welder should keep in mind that the FGR, $FGR_{mn}$ and probably the generation rate of other hazardous metals were increased as the input power increase for the high productivity.

The Experiment for Performance Evaluation of Column-rafter-purlin Connections of an Arch-type Plastic Multi-span Greenhouse (플라스틱 연동온실 기둥-서까래-도리 접합부의 성능 평가 실험)

  • Choi, Man-kwon;Ryu, Hee-ryong;Cho, Myeong-whan;Yu, In-ho;Kim, Seung-yu
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.473-479
    • /
    • 2020
  • In this study, the structural experiment was conducted with two types of specimens to investigate the mechanical behavior of the column-rafter-purlin connection of an arch-type greenhouse under monotonic loading. Based on the experimental results, the flexural performance was analyzed for two types of connections, and connection classification was attempted. Type B showed 77% of flexural performance compared to Type A, and both types showed that the rigidity and flexural strength did not reach the level of the full rigid. The behavior of the column-rafter-purlin connection was dominated by local buckling due to deformation of the weld and fasteners. As a result of connection classification by AISC standard, both Type A and B connections showed a result that did not meet the rigid connection performance assumed during design, and were classified as simple connection. Therefore, the connection performance evaluation and classification results show that the greenhouse design should be made in consideration of connection performance and in order to design a reliable greenhouse structure, a study on establishing clear design standards for the greenhouse connection is necessary.

Evaluation of Mechanical Test Characteristics according to Welding Position in FCAW Heterojunction (FCAW 이종접합에서 용접자세에 따른 기계적 시험 특성 평가)

  • Cho, Byung-Jun;Lee, Soung-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.649-656
    • /
    • 2019
  • Flux cored arc welding (FCAW), which is used widely in many fields, such as shipyards, bridge structures, construction machinery, and plant industry, is an alternative to shielded metal arc welding (SMAW). FCAW is used largely in the welding of carbon and alloy steel because it can be welded in all poses and obtain excellent quality in the field under a range of working conditions. In this study, the mechanical properties of welded parts were analyzed after different welding of SS400 and SM490A using FCAW. The following conclusions were drawn. The tensile test results satisfied the KS standard tensile strength in the range of 400~510 N/mm2 in all welding positions. The bending test confirmed that most of the specimens did not show surface breakage or other defects during bending and exhibited sufficient toughness, even after plastic deformation. The hardness test results were lower than the standard value of 350 Hv of KS B 0893. Similar to the hardness test, were greater than the KS reference value. The macro test revealed no internal flaws, non-metallic inclusions, bubbles or impurities on the entire cross section of the weld, and there were no concerns regarding lamination.