• Title/Summary/Keyword: Weld Strength

Search Result 858, Processing Time 0.031 seconds

Development of Microstructure and Mechanical Properties of Friction Stir Lap Jointed Invar 42/SS 400 (겹치기 마찰교반접합된 Invar 42/SS 400 합금의 미세조직과 기계적 특성 발달)

  • Song, K.H.;Nakata, Kazuhiro
    • Journal of Welding and Joining
    • /
    • v.30 no.5
    • /
    • pp.34-39
    • /
    • 2012
  • This study was conducted to investigate the microstructure and mechanical properties of friction stir lap joints. Invar 42 and SS 400 were selected as the experimental materials, and friction stir welding was carried out at a tool rotation speed of 200 rpm and welding speed of 100 mm/min. The application of friction stir welding to Invar 42 effectively reduced the grain size in the stir zone; the average grain size of Invar 42 was reduced from $11.5{\mu}m$ in the base material to $6.4{\mu}m$ in the stir zone, which resulted in an improvement in the mechanical properties of the stir zone. The joint interface between Invar 42 and SS 400 showed a relatively sound weld without voids and cracks, and the intermetallic compounds with $L1_2$ type in lap jointed interface were partially formed with size of 100 nm. Moreover, the hook in the advancing side of Invar 42 was formed from SS 400, which contributed to maintenance of the tensile strength. The evolution of microstructures and mechanical properties of friction stir lap jointed Invar 42 and SS 400 are also discussed herein.

Recent Developments in Friction Stir Welding Technology of Stainless Steels (스테인리스강의 마찰교반접합 기술 개발 동향)

  • Bang, Han-Sur;Bang, Hee-Seon;Kim, Jun-Hyung;You, Jea-Sun
    • Journal of Welding and Joining
    • /
    • v.30 no.5
    • /
    • pp.13-15
    • /
    • 2012
  • Stainless steels is widely used in various industries due to its high strength and excellent corrosion resistance. However, in the case of fusion welding for stainless steel, chromium deficiency layer produced by chromium carbide precipitation during welding process causes corrosion-resistance to be lower and formation of intergranular corrosion. It requires a inevitable complex procedure such as pre-heating and post-heating process etc. to prevent such weld defects. From this viewpoint, the new welding process such as a solid state welding method is suited for welding of stainless steels due to its advantages over the fusion welding. Therefore this paper intends to investigate the research trend on friction stir welding, one of solid state welding processes for stainless steels.

Experimental Study on the Characteristics of Residual Stress in Welds of Duplex Stainless Steel (듀플렉스 스테인리스강 용접부의 잔류응력 특징에 관한 실험적 연구)

  • Jeon, Juntai
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.2
    • /
    • pp.147-154
    • /
    • 2017
  • Duplex stainless steel finds increasing use as an alternative to austenitic stainless steel, particularly where chloride or sulphide stress corrosion cracking is of primary concern, due to the excellent combination of strength and corrosion resistance. During welding, duplex stainless steel does not create the same magnitude or distribution of weld-induced residual stresses as those in welded austenitic stainless steel due to the different physical and mechanical properties between them. In this work, an experimental study on the residual stresses in butt-welded duplex stainless steel is performed utilizing the layering technique to investigate the characteristics of residual stresses in the weldment.

A Study for the Improvement of Top End Piece Structural Strength (상단고정체의 구조강도 개선을 위한 연구)

  • Song, Kee-Nam;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.21 no.3
    • /
    • pp.186-192
    • /
    • 1989
  • As a part of the design of the top end piece(TEP) for the 14$\times$14 reload fuel, various models of top end piece structure were analysed, using the ANSYS code, under fuel assembly shipping and handling load conditions. The 3-dimensional isoparametric elements were used in each model. By rearrangement of slots and holes on the adapter plate, without violating the design requirements, and also by changing the enclosure attachment method used on the adapter plate from pin joints to through-weld, the load carving capacity of the adapter plate was greatly strengthened. These concepts were adopted for the design of the 14$\times$14 reload fuel.

  • PDF

A study on improvement of weldment design for large steel water pipes (수도용 대형 강관의 용접부 설계 개선에 관한 연구)

  • 배강열;나석주
    • Journal of Welding and Joining
    • /
    • v.9 no.4
    • /
    • pp.50-59
    • /
    • 1991
  • Large steel water pipes in Korea are joined prevalently by bell end method and welded at inside as well as outside of the pipes with the length of leg which is same as or larger than the thickness of pipes. This results in an excessive consumption of material and labor compared with foreign counturies such as USA, so that in our recent situation of requiring a number of water pipes such consumption is very ineffective and an improvement in weld design of water pipes is urgently necessary. In this experimental study, the possibility of reducing the length of leg to 85% of the pipe thickness was investigated through observations of microstructure and cross section of weldments, the tensile test, and the impact test of the field and laboratory specimens. As the results of this study, it was revealed that water pipes which have the leg of fillet about 0.8xthickness show a good weldability, have a greater strength than the base metal and absorb the enough energy to be safe in the working condition of the pipes.

  • PDF

An Experimental Study on Prediction of Bead Geometry for GTA Multi-pass Welding in Underhead Position (GTA 아래보기 자세 다층용접부의 비드형상 예측에 관한 실험적 연구)

  • Park, Min-Ho;Kim, Ill-Soo;Lee, Ji-Hye;Lee, Jong-Pyo;Kim, Young-Su;Na, Sang-Oh
    • Journal of Welding and Joining
    • /
    • v.32 no.1
    • /
    • pp.53-60
    • /
    • 2014
  • The automatic arc welding is generally accepted as the preferred joining technique and commonly chosen for assembly of large metal structures such as in areas of automotive, aircraft and shipbuilding due to its joint strength, reliability, and low cost compared to other joint processes. Recently, several mathematical models have been developed and studied for control and monitoring welding quality, productivity, microstructure and weld properties in arc welding processes. This study indicates the prediction of process parameters for the expected welding quality with accordance to the adaptive GTA welding process. Furthermore, the mathematical models is also develop to aid the selection of an optimal welding process as the generation of process controls to predict the bead geometry as a function output parameters in the GTA welding process. The developed models through this study showed comparatively excellent predicted results, and will extend to other welding processes to integrate an optimized system for the robotic welding process.

The Weldability of the Dissimilar Magnesium Alloy Welded by Fiber Laser (파이버 레이저를 이용한 이종 마그네슘 합금의 용접성에 관한 연구)

  • Kim, Jong-Do;Kim, Young-Sik;Song, Mook-Keun;Lee, Jung-Han
    • Journal of Welding and Joining
    • /
    • v.31 no.2
    • /
    • pp.63-68
    • /
    • 2013
  • Magnesium alloys have gained increased attention in recent years as the structural materials, because of their attractive properties such as good specific strength, excellent sound damping capability. However, to expand their applications, a reliable joining process is absolutely necessary. In this study, a CW fiber laser was used to investigate the lap weldability of sand casting and wrought magnesium alloys. The effect of defocused distance on lap weldability was examined, and it was found that spatters always generated at the around focused distance because of the high power density of the laser beam. Thus, defocused distance was required to obtain sound welds. In addition, the application of fillet welding was evaluated for minimizing the affect of sand casting magnesium alloy that have relatively poor weldability. As a result of this study, we could confirm good weldability without weld defects.

Characteristics of Friction Stir Welded AZ31 Mg Alloys with Shoulder Diameter and Rotating Speed (숄더 지름과 회전 속도에 따른 AZ31 마그네슘합금의 마찰교반접합 특성)

  • Jun, Sang-Hyuk;Ko, Young-Bong;Park, Kyeung-Chae
    • Journal of Surface Science and Engineering
    • /
    • v.46 no.1
    • /
    • pp.36-41
    • /
    • 2013
  • Friction stir welding (FSW) is a relatively new joining technique particularly for magnesium and aluminum alloys that are difficult to fusion weld. In this study, AZ31 Mg alloys were joined by FSW with shoulder diameter 11, 19 mm and rotating speed 900, 1200, 1500, 1800 rpm. The shoulder diameter and welding speed depended on the heat input during FSW process. As a result, the microstructures of stir zone were a fine grain by dynamic recrystallization. According to the larger shoulder diameter and the higher rotating speed, refined grain sizes of stir zone were grown by higher heat input, and the microhardness of stir zone was lower. The tensile strength at the shoulder diameter 19 mm, rotating speed 900 rpm was obtained maximum value. This value compared with the base metal was over 93%.

A Prediction of Initial Fatigue Crack Propagation Life in a notched Component Taking Elasto-Plastic Behavior (탄소성 응력집중부에서의 초기피로균열전파수명의 예측)

  • Cho, Sang-Myung;Kohsuke Horikawa
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.61-70
    • /
    • 1988
  • In order to consider the concept of the fitness for purpose'in fatigue design of offshore structure, fracture mechanics is applied to evaluate initial or weld defects. Generally, linear elastic fracture mechanics has been applied to tstimate initial fatigue crack propagation rate as well as long fatigue crack propagation rate. But, initial fatigue crack propagation rate in elasto-plastic notch field may not be characterized by application of stress intensity factor range .DELTA. K, because plastic effect due to stress concentration of notch may contribute to initial crack propagation. Therefore, to introduce the plastic effect into fatigue crack driving force, in this studty, the evaluating method of J-integral range .DELTA. J, was developed by willson was modified for application to notch field. In calculation of .DELTA. J obtained from the modified J-integral, stress gradient and crack closure behavior in the notch field were considered. The initial crack propagation rates in the notch fields of mild steels and high tensile strength steels were correlated to .DELTA. J. As the result, it was cleared that the present .DELTA. J is applicable to charachterize the fatigue crack propagation rates in both the elastic and elasto-plastic notch fields.

  • PDF

Joint properties and Interface Analysis of Friction Stir Welded Dissimilar Materials between Austenite Stainless Steel and 6013 Al Alloy (마찰교반접합한 오스테나이트계 스테인리스강과 6013알루미늄 합금 이종 접합부의 접합 특성 및 계면 성질)

  • Lee, Won-Bae;Biallas, gehard;Schmuecker, Martin;Jung, Seung-Boo
    • Journal of Welding and Joining
    • /
    • v.23 no.5
    • /
    • pp.61-68
    • /
    • 2005
  • Dissimilar joining of Al 6013-T4 alloys and austenite stainless steel was carried out using friction stir welding technique. Microstructures near the weld zone and mechanical properties of the joint have been investigated. Microstructures in the stainless steel side were composed of the heat affected zone and the plastically deformed zone, while those in the Al alloy side were composed of the recrystallized zone including stainless steel particles, the thermo-mechanically affected zone and the heat affected zone. TEM micrographs revealed that the interface region was composed of the mixed layers of elongated stainless steel and ultra-fine grained Al alloy with lamella structure and intermetallic compound layer. Thickness of the intermetallic layer was approximately 300nm and was identified as the A14Fe with hexagonal close packed structure. Mechanical properties, such as tensile and fatigue strengths were lower than those of 6013 Al alloy base metal, because tool inserting location was deviated to Al alloy from the butt line, which resulted in the lack of the stirring.