• 제목/요약/키워드: Weld Pool Width

검색결과 24건 처리시간 0.018초

SS316강 배관 용접부에 대한 이론적 온도해석 (Theoretical Temperature Analysis for 88316 Piping Weld)

  • 김종성;이승건;진태은;권순만
    • 대한기계학회논문집A
    • /
    • 제27권10호
    • /
    • pp.1623-1629
    • /
    • 2003
  • In this paper, the arc beam is considered as a moving disc heat source with a pseudo-Gaussian distribution of heat intensity. The solution for temperature distribution on welds is derived by using the image heat source method and the superposition method. It is general solution in that it can determine the temperature-rise distribution in and around the arc beam heat source, as well as the width and depth of the melt pool (MP) and the heat-affected zone (HAZ) in welding short lengths, where quasi-stationary conditions may not have been established. As a comparative study, the results of this analytical approach has been compared with that of the finite-element modeling. As a result, The theoretical analysis presented here has shown good consistency and is more time/cost-effective method compared with FEM.

적외선 카메라를 이용한 용접비드를 제어하기 위한 알고리즘 개발 (Development of an algorithm for Controlling Welding Bead Using Infrared Thermography)

  • 김일수;박창언;손준식;박순영;정영재
    • Journal of Welding and Joining
    • /
    • 제18권6호
    • /
    • pp.55-61
    • /
    • 2000
  • Dynamic monitoring of weld pool formation and seam deviations using infrared vision is described in this paper. Isothermal contours representing heat dissipation characteristics during the process of arc welding were analysed and processed using imaging techniques. Maximum bead width and penetration were recorded and the geometric position in relation to the welding seam was measured at each sampling point. Deviations from the desired bead geometry and welding path were sensed and their thermographic representations were digitised and welding path were sensed and their thermographic representations were digitised and subsequently identified. Evidence suggested that infrared thermography can be utilized to compensate for inaccuracies encountered in real-time during robotic arc welding.

  • PDF

Neuro-Fuzzy 기법을 이용한 GMA 용접의 비드 형상에 대한 기하학적 추론 알고리듬 개발 (A Development of the Inference Algorithm for Bead Geometry in the GMA Welding Using Neuro-fuzzy Algorithm)

  • 김면희;배준영;이상룡
    • 대한기계학회논문집A
    • /
    • 제27권2호
    • /
    • pp.310-316
    • /
    • 2003
  • One of the significant subject in the automatic arc welding is to establish control system of the welding parameters for controlling bead geometry as a criterion to evaluate the quality of arc welding. This paper proposes an inference algorithm for bead geometry in CMA Welding using Neuro-Fuzzy algorithm. The characteristic welding parameters are measured by the circuit composed of hall sensor, voltage divider tachometer, etc. and then the bead geometry of each weld pool is calculated and detected by an image processing with CCD camera and a measuring with microscope. The relationships between the characteristic welding parameters and the bead geometry have been arranged empirically. From the result of experiments, membership functions and fuzzy rules are tuned and determined by the learning of neural network, and then the relationship between actual bead geometry and inferred bead geometry are concluded by fuzzy logic controller. In the applied inference system of bead geometry using Neuro-Fuzzy algorithm, the inference error percent is within -5%∼+4% in case of bead width, -10%∼+10% in bead height, -5%∼+6% in bead area, -10%∼+10% in penetration. Use of the Neuro-Fuzzy algorithm allows the CMA Welding system to evaluate the quality in bead geometry in real time as the welding parameters change.

브라운관 전자총 부품의 펄스 Nd:YAG레이저 용접에 관한 연구 (I) - 빔의 출력특성과 광학변수 - (A Study on Pulsed Nd:YAG Laser Welding of Electron Gun in Braun Tubes (I) - Characteristics of Beam Output Energy and Optical Parameters -)

  • 김종도;하승협;조상명
    • Journal of Welding and Joining
    • /
    • 제20권4호
    • /
    • pp.525-534
    • /
    • 2002
  • During laser spot welding of the braun tube electron gun, phenomena such as serious spattering and oxidative reaction, etc. were occurred. The spatter occurred from weld pool affects the braun tube, namely it blocks up a very small hole on the shadow mask and causes short circuit between two roles of the electron gun. We guessed that high power density and oxidative reaction are main sources of these problems. So, we studied to prevent and to reduce spatter occurring in spot welding of the braun tube electron gun using pulsed Nd:YAG laser. The characteristics of laser output power was estimated, and the loss of laser energy by optical parameter and spatter was measured by powermeter. The effects of welding parameters, laser defocused distance and incident angle, were investigated on the shape and penetration depth of the laser welded bead in flare and flange joints. From these results, the laser peak power was a major factor to control penetration depth and to occur spatter. It was found that the losses of laser energy by optic parameter and sticked spatter affect seriously laser weldability of thin sheets. The deepest penetration depth is gotten on focal position, and a "bead transition" occurred with a slight displacement of focal position relative to the workpiece surface and the absorption rate of the laser energy is affected by the shape factor of the workpiece. When we changed the incident angle of laser beam, the penetration depth was decreased a little with increasing of the incident angle, and the bead width was increased. The spattering was prevented by considering laser beam energy and incident angle.ent angle.