• 제목/요약/키워드: Weld Formation

검색결과 180건 처리시간 0.023초

핫스템핑 공정에서 가열온도 및 유지시간을 고려한 22MnB5의 단일겹치기 저항 점용접 조건 최적화 (Optimization of Resistance Spot Weld Condition for Single Lap Joint of Hot Stamped 22MnB5 by Taking Heating Temperature and Heating Time into Consideration)

  • 최홍석;김병민;박근환;임우승;이선봉
    • 대한기계학회논문집A
    • /
    • 제34권10호
    • /
    • pp.1367-1375
    • /
    • 2010
  • 본 연구에서는 핫스템핑 소재로 사용되는 보론합금강판 22MnB5의 단일 겹치기 점용접에서 용접부의 강도 향상을 위한 최적화를 수행하였다. 최적화 과정은 다구찌 실험계획법에 의해 행해졌으며 공정변수는 전류, 가압력 및 통전시간으로 선정하였고, 잡음인자로서 핫스템핑 시 소재의 가열온도와 유지시간을 고려하였다. 가열조건에 따라 22MnB5 표면의 알루미늄 도금층과 모재 간의 확산반응에 의해 화합물층 두께에 산포가 발생하였으며 이러한 산포는 너겟의 형성에 영향을 미치는 것을 알 수 있었다. 한편 용접부의 인장전단강도를 목적함수로 하였을 때, 이러한 가열조건에 강건한 최적의 용접 조건은 전류 8kA, 가압력 4kN, 통전시간 18cycle로 선정되었다. 최적 조건의 검증 결과 용접부의 인장전단강도 는 32kN으로서 요구되는 규격인 23kN보다 크게 증가되었다.

고무사출성형의 적정설계 (Optimum Design of Rubber Injection Molding Process)

  • 이은주;임광희;부타이지양
    • Korean Chemical Engineering Research
    • /
    • 제49권1호
    • /
    • pp.47-55
    • /
    • 2011
  • K사의 고무 사출성형에 있어서 애로사항인 등속조인트 부트(boots)의 크 (crack) 발생 등의 문제점을 해결하기 위하여, 상용 CAE 프로그램인 MOLDFLOW(Ver. 5.2)를 이용한 전산모사를 수행하여 적정금형설계를 도출하고 적정작업조건을 구축하였다. 그 결과 크 의 발생 원인은 크 이 발생하는 위치에 형성되는 weld 및 meld line의 형성 때문이고, 또한 크 이 발생하는 위치에서의 가류(curing)가 불완전한 것이 확인되었다. 이와 같은 weld 및 meld line의 형성을 방지하기 위해서 게이트(gate)의 위치를 변경하고 최적위치에 설계함으로써, 유동선단(melt front)의 충돌 또는 수지흐름의 만남을 최소화하는 충전패턴(fill pattern)을 형성하고 부트 안쪽 하단의 크 발생을 방지하였다. Weld 및 meld line과 에어트랩(air trap) 불량이 가장 큰 게이트 위치는 각각 최적 게이트위치를 기준으로 서로 정반대 방향임이 관찰 되었다. 한편 몰드(mold)의 온도를 $170^{\circ}C$로 유지하게 함으로써 크 이 발생했던 위치에 가류조건을 만족시켰다.

조선용 강재의 $CO_2$레이저 GMA 하이브리드 용접에서 갭 브리징 능력 향상기술 개발 (Improvement of Gap Bridging Ability in $CO_2$ Laser-GMA Hybrid Welding)

  • 채현병;김철희;김정한;이세헌
    • Journal of Welding and Joining
    • /
    • 제24권5호
    • /
    • pp.49-56
    • /
    • 2006
  • For laser welding in shipbuilding industry, gap bridging capability is one of the most important characteristics to achieve the high productivity and good weld quality. Recently, laser-GMA hybrid welding process is regarded as a distinctive method to overcome the tight gap tolerance with improving the productivity. In this study, the influence of process parameters on the bead formation was experimentally analyzed and the relationship between the process parameters and geometric imperfections was investigated. It was revealed that undercut, excessive weld metal, excessive penetration and incompletely filled groove were the major geometric imperfections. The optimized wire feeding and arc pressure were necessary to ensure the gap bridging ability. The approach to select the process parameters was conducted for butt welding with up to 2mm joint gap, in which the sound weld beads were generated without changing the welding speed.

SA508 class 3 서브머지드 아크용접부의 기계적 성질에 미치는 입열량의 영향 (Effect of Heat Input on the Mechanical Properties of SA508 class 3 Steel Weldments with Submerged Arc Welding)

  • 서윤석;고진현;김남훈;오세용;주기남
    • Journal of Welding and Joining
    • /
    • 제22권5호
    • /
    • pp.38-45
    • /
    • 2004
  • The present study is to investigate the effect of heat input on the microstructure, tensile properties and toughness of single-pass submerged arc bead-in-groove welds produced on SA508 class 3 steels. The heat input was varied in the range of 1.6, 3.2 and 5.0 kJ/mm. The toughness of weld metals was evaluated by using subsize Charpy V-notch specimens in the temperature range of -19$0^{\circ}C$ to 2$0^{\circ}C$. The weld microstructure and fractography were observed by optical and scanning electron microscopies, respectively. With increasing heat inputs, tensile strength and hardness of weld metals were decreased while elongation was increased. The poor notch toughness at 1.6 kJ/mm was attributed to the formation of ferrite with aligned second phase and banitic microstructure with high yield strength while that at 5.0 kJ/mm was due to the presence of grain boundary and polygonal ferrites. The microstructure of the intermediate energy input welds consisted of a high proportion of acicular ferrite with limited polygonal ferrites, which provide improved notch toughness.

자동차용 1500MPa급 초고강도강의 레이저 용접 특성에 관한 연구 (A Study on Laser Welding Characteristics of 1500MPa Grade Ultra High Strength Steel for Automotive Application)

  • 최진강;김종곤;신승민;김철희;이세헌
    • 한국레이저가공학회지
    • /
    • 제13권3호
    • /
    • pp.19-26
    • /
    • 2010
  • In this study, fundamental experiment was conducted with various strength of UHSS (Ultra High Strength Steel) by $CO_2$ laser. And then, butt and lap joint laser welding with boron alloyed steel and Al-Si coated boron alloy steel have been done by changing laser beam feature, existence of gap and existence of coating layer to know welding characteristics of those materials. As a result, in case of fundamental experiment with various strength steel, hardening was found in the weld metal of all tested materials and softening was found at the heat affected zone of SGAFC 1180. In case of laser butt welding of UHSS, mechanical properties was improved by using small laser beam diameter and Al-Si coating layer caused fracture of weld metal. In case of laser lap welding of UHSS, Al-Si coating layer resulted in formation of intermetallic compound at the fusion boundary where fracture occurred. Al-Si coating layer caused lowering mechanical properties of weld metal.

  • PDF

아연도금 강판의 $CO_2$ 레이저-TIG 하이브리드 용접에 관한 연구 Part 1 : 용접현상분석 (A Study on $CO_2$ Laser-TIG Hybrid Welding of Zinc-Coated Steel Sheet Part 1: Analysis of Welding Phenomena)

  • 김철희;최웅용;채현병;김정한;이세헌
    • Journal of Welding and Joining
    • /
    • 제24권4호
    • /
    • pp.22-26
    • /
    • 2006
  • In lap welding of zinc-coated steel, porosity formation is one of most significant weld defects, which is caused by zinc vapor generated between the steel sheets. Various solutions have been proposed in the past years but development of more effective method is a worthwhile subject to be investigated. In this study, autogenous laser welding and laser-TIG hybrid welding was applied to the lap welding of zinc-coated steel without gap, and weld pool behaviors were observed by using high speed camera and the porosity generation mechanism was analyzed. The weld defects were successfully eliminated by laser-TIG hybrid welding. This is because the leading TIG arc partially melted the upper sheet and vaporized/oxidized the coated zinc on the lapped surfaces prior to the trailing laser illuminating the specimen.

TECHNIQUES FOR INTERGRANULAR CRACK FORMATION AND ASSESSMENT IN ALLOY 600 BASE AND ALLOY 182 WELD METALS

  • LEE, TAE HYUN;HWANG, IL SOON;KIM, HONG DEOK;KIM, JI HYUN
    • Nuclear Engineering and Technology
    • /
    • 제47권1호
    • /
    • pp.102-114
    • /
    • 2015
  • Background: A technique developed to produce artificial intergranular stress corrosion cracks in structural components was applied to thick, forged alloy 600 base and alloy 182 weld metals for use in the qualification of nondestructive examination techniques for welded components in nuclear power plants. Methods: An externally controlled procedure was demonstrated to produce intergranular stress corrosion cracks that are comparable to service-induced cracks in both the base and weld metals. During the process of crack generation, an online direct current potential drop method using array probes was used to measure and monitor the sizes and shapes of the cracks. Results: A microstructural characterization of the produced cracks revealed realistic conformation of the crack faces unlike those in machined notches produced by an electrodischarge machine or simple fatigue loading using a universal testing machine. Conclusion: A comparison with a destructive metallographic examination showed that the characteristics, orientations, and sizes of the intergranular cracks produced in this study are highly reproducible.

연강 판재의 맞대기 용접에서 아크에 작용하는 자기력의 해석 (Analysis of Electro-Magnetic Force Acting on Arc Column in Butt-Joint Welding of Mild Steel Plate)

  • 배강열
    • Journal of Welding and Joining
    • /
    • 제23권4호
    • /
    • pp.73-80
    • /
    • 2005
  • Arc blow being occurred by Electro-Magnetic force(EMF) during the electric arc welding prevents the formation of a sound weldment. In this study, the effects of arc position, groove size, tack weld and base plate on the EMF in a butt-joint welding of mild steel plate are analyzed by a computer simulation based on the finite element method. The EMF can be numerically identified to be caused by a difference of the magnetic flux-density between ahead of and behind the arc in case that the workpiece locates asymmetrically around the uc. When there exists an air gap of groove ahead of the arc in the welding direction, the similar magnetic force has been producted regardless of the arc position and the gap size. The tack weld alleviates the magnetic force to about one fourth at the finish end of the workpiece. The magnetic force can be also significantly reduced with the base plate to about one fifth at the start end of the workpiece containing a tack weld.

스마트폰 카메라용 VCM housing 사출 성형 해석 (Injection molding analysis of smart phone camera VCM housing)

  • 윤선진;조용무
    • Design & Manufacturing
    • /
    • 제11권3호
    • /
    • pp.13-18
    • /
    • 2017
  • The injection molding analysis of VCM (Voice Coil Motor) housing for smart phone cameras were performed. We conducted the analysis in terms of injection molding pressure, the formation of weld lines, flow marks, and flow patterns. The goal of the analysis was targeted for the prediction of the optimal gate locations. Because the quality of VCM housing is strongly dependent on the precise control of the camera lens by its nature, we focused on the lens guiding lanes in the VCM housing. We first calculated the maximum injection molding pressure in terms of the filled volumes. The injection molding pressure were calculated within 146MPa at about 90% volume filled. We also investigated the possibility of the occurrence of design-related defects such flow marks, weld lines. Filling patterns regarding the design of the gate locations were delineated to find the weld lines. Throughout the simulations, the final deformations of the lens guiding lanes for the VCM housing were calculated. The deformations distribute ranging from $0.5{\mu}m$ to $2.50{\mu}m$, which were used to find the optimal design of the gates.

Studies on weldment performance of Ti/Al dissimilar sheet metal joints using laser beam welding

  • Kalaiselvan, K.;Elango, A.;Nagarajan, N.M.;Mathiazhagan, N.;Vignesh, Kannan
    • Coupled systems mechanics
    • /
    • 제7권5호
    • /
    • pp.627-634
    • /
    • 2018
  • Laser beam welding is more advantageous compared to conventional methods. Titanium/Aluminium dissimilar alloy thin sheet metals are difficult to weld due to large difference in melting point. The performance of the weldment depends upon interlayer formation and distribution of intermetallics. During welding, aluminium gets lost at the temperature below the melting point of titanium. Therefore, it is needed to improve a new metal joining techniques between these two alloys. The present work is carried for welding TI6AL4V and AA2024 alloy by using Nd:YAG Pulsed laser welding unit. The performance of the butt welded interlayer structures are discussed in detail using hardness test and SEM. Test results reveal that interlayer fracture is caused near aluminium side due to low strength at the weld joint.