• Title/Summary/Keyword: Weld

Search Result 3,041, Processing Time 0.03 seconds

Numerical Modeling of the Transformation Temperature Effect on the Relaxation of Welding Residual Stress (용접 잔류응력 완화에 미치는 변태 온도의 영향에 관한 수치적 모델링)

  • Jang, Gyoung-Bok;Kang, Sung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2552-2559
    • /
    • 2000
  • Most of ferrous b.c.c weld materials have martensitic transformation during rapid cooling after welding. It is well known that volume expansion due to the phase transformation could influence on the relaxation of welding residual stress. To apply this effect practically, it is necessary to establish a numerical model which is able to estimate the effect of phase transformation on residual stress relaxation quantitatively. For this purpose, the analysis is carried out in two regions, i.e., heating and cooling, because the variation of material properties following a phase transformation in cooling is different in comparison with the case in heating, even at the same temperature. The variation of material properties following phase transformation is considered by the adjustment of specific heat and thermal expansion coefficient, and the distribution of residual stress in analysis is compared with that of experiment by previous study. In this study, simplified numerical procedures considering phase transformation, which based on a commercial finite element package was established through comparing with the experimental data of residual stress distribution by other researcher. To consider the phase transformation effect on residual stress relaxation, the transition of mechanical and thermal property such as thermal expansion coefficient and specific heat capacity was found by try and error method in this analysis. In addition to, since the transformation temperature changes by the kind and control of alloying elements, the steel with many kinds of transformation temperature were selected and the effect of transformation on stress releasement was investigated by the numerical procedures considering phase transformation.

The Clinical Usefulness of Ultrasound-Aided Fixation Using an Absorbable Plate System in Patients with Zygomatico-Maxillary Fracture

  • Lee, Jong Hun;Park, Jun Hyung
    • Archives of Plastic Surgery
    • /
    • v.40 no.4
    • /
    • pp.330-334
    • /
    • 2013
  • Background Ultrasound-aided fixation is a recently developed alternative method of treatment of zygomatico-maxillary (ZM) fracture, and it can resolve the problems of excessive torsion force and subsequent fractures of screws. We conducted this study to evaluate the clinical usefulness of ultrasound-aided fixation as compared with the conventional fixation method using a drill and an expander in patients with ZM fracture. Methods We conducted a retrospective study in 35 patients with ZM fracture who had been treated at our hospital during a period ranging from March of 2008 to December of 2010. We divided them into two groups: an ultrasound-aided fixation group, comprising 13 patients who underwent ultrasound-aided fixation (SonicWeld Rx, KLS Martin), and a conventional group, comprising 22 patients who underwent conventional fixation (Biosorb FX, Linvatec Biomaterials Ltd.). We compared such variables as sex, direction, age at operation, follow-up period, operation duration, number of fixed holes, and time to discharge between the two groups. Results The ultrasound-aided fixation reduced the operation duration by about 30 minutes as compared with that of conventional fixation. There was no significant difference in follow-up period, number of fixed holes, or time to discharge between the two groups. Furthermore, there were no complications in either group. Conclusions The ultrasound-aided fixation of fractured ZM bone using an absorbable implant system is safe and effective in promptly reducing the bone fracture and providing satisfactory cosmetic outcomes over time.

Decision-Making Method of Priority Welding Process (용접법의 우선순위 결정 방법)

  • Kim, Jong-Do;Kim, Kwang-heui;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.39-47
    • /
    • 2016
  • Nowadays, several welding processes are generally used to join parts together, and the materials are generally steel, aluminum, copper, stainless steel, and other difficult-to-weld materials. If a proper welding process is chosen, it is helpful for welding parts. However, there is no desirable technique for appropriately deciding on the welding process in the industry. Therefore, an appropriate method of selecting a welding process is needed for the novice worker in the industry. In this sense, a new analytic network process (ANP) technique is used for effective decision making in welding. By considering several criteria in ANP, a selection method is suggested to decide on the proper welding process. In the study, several criteria were considered for the proper welding of parts. By considering a matrix of prior interdependence effects among various welding processes, a decision-making method based on an ANP is accomplished using a weighting matrix, which is supposed to select an appropriate welding process. In addition, for appropriate decision criteria of the welding process, several factors, such as material, shape, precision, economics, and equipment, are used to accomplish the ANP algorithm. Moreover, the final weighting matrix is calculated following its ANP strategy. Furthermore, this decision-making technique is applied to both stainless razor spot joining and thick steel pipe joining. The results show its reliability and practicality, and the novice engineer and manager can use this technique to determine the best welding process.

Closed-Form Solutions for Stress Intensity Factor and Elastic Crack Opening Displacement for Circumferential Through-Wall Cracks in the Interface between an Elbow and a Straight Pipe under Internal Pressure (내압이 작용하는 직관과 엘보우의 경계면에 존재하는 원주방향 관통균열의 응력확대계수 및 탄성 균열열림변위 예측식)

  • Jang, Youn-Young;Jeong, Jae-Uk;Huh, Nam-Su;Kim, Ki-Seok;Cho, Woo-Yeon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.5
    • /
    • pp.553-560
    • /
    • 2015
  • Fracture mechanics analysis for cracked pipes is essential for applying the leak-before-break (LBB) concept to nuclear piping design. For LBB assessment, crack instability and leak rate should be predicted accurately for through-wall cracked pipes. In a nuclear piping system, elbows are connected with straight pipes by circumferential welding; this weld region is often considered a critical location. Hence, accurate crack assessment is necessary for cracks in the interface between elbows and straight pipes. In this study, the stress intensity factor (SIF) and elastic crack opening displacement (COD) were estimated through detailed 3D elastic finite element (FE) analyses. Based on the results, closed-form solutions of shape factors for calculating the SIFs and elastic CODs were proposed for circumferential through-wall cracks in the abovementioned interfaces under internal pressure. In addition, the effect of the elbow on shape factors was investigated by comparing the results with the existing solutions for a straight pipe.

Effect of the welding speed on the characteristics of Nd:YAG laser welds for automotive application : 600MPa PH high strength steel (600MPa급 자동차용 석출경화형 고장력강판 Nd:YAG 레이저 용접부의 특성에 미치는 용접속도의 영향)

  • Han, Tae-Kyo;Jung, Byung-Hun;Kang, Chung-Yun
    • Laser Solutions
    • /
    • v.10 no.3
    • /
    • pp.25-32
    • /
    • 2007
  • The effect of welding speed on the weldability, microstructures, hardness, tensile property of Nd:YAG laser welding joint in 600MPa grade precipitation hardening high strength steel was investigated. A shielding gas was not used, and bead-on-plate welding was performed using various welding speeds at a power of 3.5kW. Porosity in the joints occurred at 1.8m/min, but were not observed over the welding speed of 2.1m/min. However, spatter occurred over the welding speed of 6.6m/min. The hardness was the highest at heat affected zone(HAZ) near fusion zone(FZ), and was decreased on approaching to the base metal. The maximum hardness increased with increasing welding speed. The microstructure of FZ was composed of coarse grain boundary ferrite and bainite(upper) but the HAZ near the FZ contained bainite(Lower) and fine ferrite at a low welding speed. With increasing welding speed, ferrite at the FZ and the HAZ became finely and upper binite changed to lower bainite. In a perpendicular tensile test to the weld line, all specimens were fractured at the base metal, and the tensile strength and the yield strength of joints was equal to those of raw material. Elongation was found to be lower than that of the raw material.

  • PDF

Cyclic performance and design recommendations of a novel weak-axis reduced beam section connection

  • Lu, Linfeng;Xu, Yinglu;Liu, Jie;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.337-353
    • /
    • 2018
  • In previous weak-axis moment connection tests, brittle fracture always initiated near the edge of the beam flange groove weld due to force flow towards the stiffer column flanges, which is the opposite pattern as strong-axis moment connections. As part of the China NSFC (51278061) study, this paper tested two full-scale novel weak-axis reduced beam section moment connections, including one exterior frame connection specimen SJ-1 under beam end monotonic loading and one interior frame joint specimen SJ-2 under column top cyclic loading. Test results showed that these two specimens were able to satisfy the demands of FEMA-267 (1995) or ANSI/AISC 341-10 (2010) without experiencing brittle fracture. A parametric analysis using the finite element software ABAQUS was carried out to better understand the cyclic performance of the novel weak-axis reduced beam section moment connections, and the influence of the distance between skin plate and reduced beam section, a, the length of the reduced beam section, b, and the cutting depth of the reduced beam section, c, on the cyclic performance was analyzed. It was found that increasing three parametric values reasonably is beneficial to forming beam plastic hinges, and increasing the parameter a is conducive to reducing stress concentration of beam flange groove welds while increasing the parameters b and c can only reduce the peak stress of beam flange groove welds. The rules recommended by FEMA350 (2000) are suitable for designing the proposed weak-axis RBS moment connection, and a proven calculation formulation is given to determine the thickness of skin plate, the key components in the proposed weak-axis connections. Based on the experimental and numerical results, a design procedure for the proposed weak-axis RBS moment connections was developed.

Experimental studies of headed stud shear connectors in UHPC Steel composite slabs

  • Gao, Xiao-Long;Wang, Jun-Yan;Yan, Jia-Bao
    • Structural Engineering and Mechanics
    • /
    • v.74 no.5
    • /
    • pp.657-670
    • /
    • 2020
  • Due to the high compressive and tensile strength of ultra-high performance concrete (UHPC), UHPC used in steel concrete composite structures provided thinner concrete layer compared to ordinary concrete. This leaded to the headed stud shear connectors embedded in UHPC had a low aspect ratio. In order to systematic investigate the effect of headed stud with low aspect ratio on the structural behaviors of steel UHPC composite structure s this paper firstly carried out a test program consisted of twelve push out specimens. The effects of stud height, aspect ratio and reinforcement bars in UHPC on the structural behaviors of headed studs were investigated. The push out test results shows that the increasing of stud height did not obviously influence the structural behaviors of headed studs and the aspect ratio of 2.16 was proved enough to take full advantage of the headed stud strength. Based on the test results, the equation considering the contribution of weld collar was modified to predict the shear strength of headed stud embedded in UHPC. The modified equation could accurately predict the shear strength of headed stud by comparing with the experimental results. On the basis of push out test results, bending tests consisted of three steel UHPC composite slabs were conducted to investigate the effect of shear connection degree on the structural behaviors of composite slabs. The bending test results revealed that the shear connection degree had a significantly influence on the failure modes and ultimate resistance of composite slabs and composite slab with connection degree of 96% in s hear span exhibited a ductile failure accompanied by the tensile yield of steel plate and crushing of UHPC. Finally, analytical model based on the failure mode of composite slabs was proposed to predict the ultimate resistance of steel UHPC composite slabs with different shear connection degrees at the interface.

Push-out resistance of concrete-filled spiral-welded mild-steel and stainless-steel tubes

  • Loke, Chi K.;Gunawardena, Yasoja K.R.;Aslani, Farhad;Uy, Brian
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.823-836
    • /
    • 2019
  • Spiral welded tubes (SWTs) are fabricated by helically bending a steel plate and welding the resulting abutting edges. The cost-effectiveness of concrete-filled steel tube (CFST) columns can be enhanced by utilising such SWTs rather than the more conventional longitudinal seam welded tubes. Even though the steel-concrete interface bond strength of such concrete-filled spiral-welded steel tubes (CF-SWSTs) is an important consideration in relation to ensuring composite behaviour of such elements, especially at connections, it has not been investigated in detail to date. CF-SWSTs warrant separate consideration of their bond behaviour to CFSTs of other tube types due to the distinct weld seam geometry and fabrication induced surface imperfection patterns of SWTs. To address this research gap, axial push-out tests on forty CF-SWSTs were carried out where the effects of tube material, outside diameter (D), outside diameter to wall thickness (D/t), length of the steel-concrete interface (L) and concrete strength grade (f'c) were investigated. D, D/t and L/D values in the range 102-305 mm, 51-152.5 and 1.8-5.9 were considered while two nominal concrete grades, 20 MPa and 50 MPa, were used for the tests. The test results showed that the push-out bond strengths of CF-SWSTs of both mild-steel and stainless-steel were either similar to or greater than those of comparable CFSTs of other tube types. The bond strengths obtained experimentally for the tested CF-SWSTs, irrespective of the tube material type, were found to be well predicted by the guidelines contained in AISC-360.

3-D vision sensor for arc welding industrial robot system with coordinated motion

  • Shigehiru, Yoshimitsu;Kasagami, Fumio;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.382-387
    • /
    • 1992
  • In order to obtain desired arc welding performance, we already developed an arc welding robot system that enabled coordinated motions of dual arm robots. In this system one robot arm holds a welding target as a positioning device, and the other robot moves the welding torch. Concerning to such a dual arm robot system, the positioning accuracy of robots is one important problem, since nowadays conventional industrial robots unfortunately don't have enough absolute accuracy in position. In order to cope with this problem, our robot system employed teaching playback method, where absolute error are compensated by the operator's visual feedback. Due to this system, an ideal arc welding considering the posture of the welding target and the directions of the gravity has become possible. Another problem still remains, while we developed an original teaching method of the dual arm robots with coordinated motions. The problem is that manual teaching tasks are still tedious since they need fine movements with intensive attentions. Therefore, we developed a 3-dimensional vision guided robot control method for our welding robot system with coordinated motions. In this paper we show our 3-dimensional vision sensor to guide our arc welding robot system with coordinated motions. A sensing device is compactly designed and is mounted on the tip of the arc welding robot. The sensor detects the 3-dimensional shape of groove on the target work which needs to be weld. And the welding robot is controlled to trace the grooves with accuracy. The principle of the 3-dimensional measurement is depend on the slit-ray projection method. In order to realize a slit-ray projection method, two laser slit-ray projectors and one CCD TV camera are compactly mounted. Tactful image processing enabled 3-dimensional data processing without suffering from disturbance lights. The 3-dimensional information of the target groove is combined with the rough teaching data they are given by the operator in advance. Therefore, the teaching tasks are simplified

  • PDF

Flaw Assessment on an Offshore Structure using Engineering Criticality Analysis (ECA 기법을 이용한 해양구조물의 결함 평가)

  • Kang, Beom-Jun;Kim, Yooil;Ryu, Cheol-Ho;Ki, Hyeok-Geun;Park, Sung-Gun;Oh, Yeong-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.6
    • /
    • pp.435-443
    • /
    • 2015
  • Offshore structure may be considerably vulnerable to fatigue failure while initial flaw propagates under cyclic loading, so crack propagation analysis/fracture/yield assessments about initial flaw detected by NDT are necessarily required. In this paper, case studies have been conducted by flaw assessment program using engineering criticality analysis (ECA) approach. Variables such as flaw geometry, flaw size, structure geometry, dynamic stress, static stress, toughness, crack growth rate, stress concentration factor (SCF) affected by weld are considered as analysis conditions. As a result, the safety of structure was examined during fatigue loading life. Also, critical initial flaw size was calculated by sensitivity module in the developed program. The flaw assessments analysis using ECA approach can be very useful in offshore industries owing to the increasing demand on the engineering criticality analysis of potential initial flaws.