• Title/Summary/Keyword: Weighting method

Search Result 1,302, Processing Time 0.026 seconds

Measurement of Rainfall Intensity Using a Weighting Tipping Bucket Raingauge (중량식 전도형 우량계를 이용한 강우강도 측정)

  • Kim Hyun Chul;Lee Bu Yong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.4
    • /
    • pp.211-217
    • /
    • 2004
  • The instrument used in this study consists of a lkg capacity loadcell and a Imm tipping bucket rain gauge. There are two signals: one is the weight of the water in the tipping bucket and the other is the pulse from the reversing mechanism of the tipping bucket. The loadcell measures the weight of water with a 0.0lmm resolution up to 1mm rainfall and the bucket reverses beyond 1mm. From this point, a pulse signal generates and the loadcell starts measuring the weight again. A field test was carried out with the range of rainfall intensity from 42mm/h to 250mm/h. The result shows an error range from -2.2% to + 2.6% in 12 measurement cases with a rainfall of l00mm or more. This result satisfies the WMO recommendation for rainfall intensity instrumentation which allows a 5% range. In a field experiment during 17 to 19 August, 2004, more than 100mm/h rainfall intensity was observed by this instrument, confirming that our instrument has a sufficient capacity of rainfall intensity measurement under extreme conditions like Jangma (Bai-u season). Compared with existing commercial models which employ a water drop measurement method, our method can give a practical solution for diagnostic check of remote rain gauges using two independent signals.

Sol-gel deposited TiInO thin-films transistor with Ti effect

  • Kim, Jung-Hye;Son, Dae-Ho;Kim, Dae-Hwan;Kang, Jin-Kyu;Ha, Ki-Ryong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.200-200
    • /
    • 2010
  • In recent times, metal oxide semiconductors thin films transistor (TFT), such as zinc and indium based oxide TFTs, have attracted considerable attention because of their several advantageous electrical and optical properties. There are many deposition methods for fabrication of ZnO-based materials such as chemical vapor deposition, RF/DC sputtering and pulsed laser deposition. However, these vacuum process require expensive equipment and result in high manufacturing costs. Also, the methods is difficult to fabricate various multicomponent oxide semiconductor. Recently, several groups report solution processed metal oxide TFTs for low cost and non vacuum process. In this study, we have newly developed solution-processed TFTs based on Ti-related multi-component transparent oxide, i. e., InTiO as the active layer. We propose new multicomponent oxide, Titanium indium oxide(TiInO), to fabricate the high performance TFT through the sol-gel method. We investigated the influence of relative compositions of Ti on the electrical properties. Indium nitrate hydrate [$In(NO^3).xH_2O$] and Titanium isobutoxide [$C_{16}H_{36}O_4Ti$] were dissolved in acetylacetone. Then monoethanolamine (MEA) and acetic acid ($CH_3COOH$) were added to the solution. The molar concentration of indium was kept as 0.1 mol concentration and the amount of Ti was varied according to weighting percent (0, 5, 10%). The complex solutions become clear and homogeneous after stirring for 24 hours. Heavily boron (p+) doped Si wafer with 100nm thermally grown $SiO_2$ serve as the gate and gate dielectric of the TFT, respectively. TiInO thin films were deposited using the sol-gel solution by the spin-coating method. After coating, the films annealed in a tube furnace at $500^{\circ}C$ for 1hour under oxygen ambient. The 5% Ti-doped InO TFT had a field-effect mobility $1.15cm^2/V{\cdot}S$, a threshold voltage of 4.73 V, an on/off current ratio grater than $10^7$, and a subthreshold slop of 0.49 V/dec. The 10% Ti-doped InO TFT had a field-effect mobility $1.03\;cm^2/V{\cdot}S$, a threshold voltage of 1.87 V, an on/off current ration grater than $10^7$, and a subthreshold slop of 0.67 V/dec.

  • PDF

Efficiency Analysis for TV Home Shopping Companies Using DEA(Data Envelopment Analysis) (DEA 모형을 이용한 TV홈쇼핑기업의 상대적 효율성 연구)

  • Kim, Soon-Hong;Ahn, Young-Hyo;Oh, Seung-Chul
    • Journal of Distribution Science
    • /
    • v.12 no.8
    • /
    • pp.5-15
    • /
    • 2014
  • Purpose - The method of TV home shopping is a kind of retail method that provides the viewer with information about products and, further, sells the products to consumers through the media of television. The domestic home-shopping industry has been expanding since 1995, and there are six companies in this arena as of 2012. In this study, we evaluate the management efficiency of TV home-shopping companies and provide suggestions for improving efficiency, using the DEA (data envelopment analysis) model. Hence, we expect to contribute to the progress of the companies' efficiency and the development of the TV home-shopping industry, where deepening competition is inevitable because it is experiencing the maturing market stage in its life cycle. Research design, data, and methodology - Efficiency is the ratio of the quantity of input to the quantity of output of a product or service. It is necessary to estimate aggregate inputs and aggregate outputs, which are calculated by applying a weighting to a number of input and output factors, to measure the efficiency. The DEA model is divided into the CCR model and the BCC model. The CCR model is a basic model that assumed constant returns to scale (CRS), and the BCC model extends the CCR model to accommodate technologies exhibiting variable returns to scale (VRS), and concerns only the technical efficiency without considering the efficiency of returns to scale. In this study, we consider six companies each year from 2008 to 2012 as a DMU (Decision Making Unit) and analyze the differences in efficiency for each company in each year. Furthermore, we evaluate the operating characteristics of TV home-shopping companies, using three models, in accordance with the overall performance, profitability, and marketability of the business. Results - The result of the analysis, using DEA models, shows that Hyundai Home Shopping (2009, 2010, 2011), GS Home Shopping (2011), NS Home Shopping (2011) and CJ O Shopping (2012) possess MPSS (most productive scale size), with a score 1.0 in CCR, BCC, and scale efficiency. Particularly, Hyundai Home Shopping is shown to be the most efficient in terms of overall business performance, marketability, and profitability. The overall efficiency of the home shopping industry has displayed an increasing trend since 2008, even though it decreased marginally in 2012; further, we can observe that home shopping companies operate with increasing efficiency with the passage of time. Conclusions - Home shopping companies have focused on market expansion rather than profits, as they displayed better efficiency in marketability than increase in profitability during the period 2008-2012. In addition, the main reason for the increased efficiency in the home shopping industry is the market expansion through the revenue increase of each home shopping company. This study can be used as a reference when home shopping companies attempt to devise future strategies, as it suggests efficiency benchmarks and development levels for each home shopping company.

The Improvement of maintainability evaluation method at system level using system component information and fuzzy technique (시스템의 구성품 정보와 퍼지 기법을 활용한 시스템 수준 정비도 평가 방법의 개선)

  • Yoo, Yeon-Yong;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.100-109
    • /
    • 2019
  • Maintainability indicates the extent to which maintenance can be done easily and quickly. The consideration of maintainability is crucial to reduce the operation and support costs of weapon systems, but if the maintainability is evaluated after the prototype production is done and necessitates design changes, it may increase the cost and delay the schedule. The evaluation should verify whether maintenance work can be performed, and support the designers in developing a design to improve maintainability. In previous studies, the maintainability index was calculated using the graph theory at the early design phase, but evaluation accuracy appeared to be limited. Analyzing the methods of evaluating the maintainability using fuzzy logic and 3D modeling indicate that the design of a system with good maintainability should be done in an integrated manner during the whole system life cycle. This paper proposes a method to evaluate maintainability using SysML-based modeling and simulation technique and fuzzy logic. The physical design structure with maintainability attributes was modeled using SysML 'bdd' diagram, and the maintainability was represented by an AHP matrix for maintainability attributes. We then calculated the maintainability using AHP-based weighting calculation and fuzzy logic through the use of SysML 'par' diagram that incorporated MATLAB. The proposed maintainability model can be managed efficiently and consistently, and the state of system design and maintainability can be analyzed quantitatively, thereby improving design by early identifying the items with low maintainability.

Effect of Regulation of Leaf to Fruit Ratio on the Fruit Growth and Quality of 'Haryejosaeng' Satsuma Mandarin in Non-Heated Plastic Film House (엽과비 조절이 무가온 하우스 하례조생 감귤의 비대 및 과실품질에 미치는 영향)

  • Kang, Seok-Beom;Joha, Jae-Ho;Moon, Young-Eel;Lee, Hae-Jin;Han, Seung-Gap;Park, Kyung-Jin;Kim, Sang-Suk;Choi, Young-Hun
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.3
    • /
    • pp.207-212
    • /
    • 2018
  • BACKGROUND: Recently, the need for a method to cultivate 'Haryejosaeng' Satsuma mandarin has been increasing. However, there is limited information available as this is a new Satsuma mandarin cultivar, which was bred by the RDA in 2004. Many farmers who cultivate this cultivar follow the cultivation method similar to that used for 'Miyagawa' Satsuma mandarin, and suffer low production of optimum-sized fruits. METHODS AND RESULTS: This study was conducted to find out the optimum ratio of leaf-to-fruit for the stable production of high quality 'Haryejosaeng' Satsuma mandarin fruits in a non-heated plastic film house. Seven-year-old 'Haryejosaeng' Satsuma mandarin trees were used in the study. Before the treatment, the leaf-to-fruit ratio ranged from 5.7 to 17.9. The treatments included 10, 20, 30, and 40 leaves per fruit. The fruits were removed if over fruiting was observed at day 60 after full bloom. We investigated the fruit size and quality on the day of harvest. Flowering and fruiting patterns in each treatment were recorded for the following year. In the experiments, the flower-to-leaf ratio was 1.12 to 1.74. As the leaf-to-fruit ratio decreased, the fruit size and weight also decreased. Contrarily, the higher the ratio of leaf-to-fruit, the higher fruit size and weight were. It was noted that the ratio of 20:1 was ideal to produce the M grade optimum-sized Satsuma mandarin fruits on the day of harvest. However, higher ratio might result in fruits weighting above 100 g. There was no difference among the treatments in terms of fruit quality, such as total soluble solid contents, titratable acid, and color. In the subsequent years, flowering and fruiting in the treatments were lowered when the leaf number per fruit was 10, but they were improved when the leaf number per fruit was above 20. CONCLUSION: Based on the above results, the optimum ratio of leaf-to-fruit was found to be 20:1 for flowering and fruiting of 'Haryejosaeng' Satsuma mandarin. It is important that optimum ratio of leaf-to-fruit is set as a standard to produce good grade and quality of 'Haryejosaeng' Satsuma mandarin fruits.

Risk of Flood Damage Potential and Design Frequency (홍수피해발생 잠재위험도와 기왕최대강수량을 이용한 설계빈도의 연계)

  • Park, Seok Geun;Lee, Keon Haeng;Kyung, Min Soo;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.489-499
    • /
    • 2006
  • The Potential Flood Damage (PFD) is widely used for representing the degree of potential of flood damage. However, this cannot be related with the design frequency of river basin and so we have difficulty in the use of water resources field. Therefore, in this study, the concept of Potential Risk for Flood Damage Occurrence (PRFD) was introduced and estimated, which can be related to the design frequency. The PRFD has three important elements of hazard, exposure, and vulnerability. The hazard means a probability of occurrence of flood event, the exposure represents the degree that the property is exposed in the flood hazard, and the vulnerability represents the degree of weakness of the measures for flood prevention. Those elements were devided into some sub-elements. The hazard is explained by the frequency based rainfall, the exposure has two sub-elements which are population density and official land price, and the vulnerability has two sub-elements which are undevelopedness index and ability of flood defence. Each sub-elements are estimated and the estimated values are rearranged in the range of 0 to 100. The Analytic Hierarchy Process (AHP) is also applied to determine weighting coefficients in the equation of PRFD. The PRFD for the Anyang river basin and the design frequency are estimated by using the maximum rainfall. The existing design frequency for Anyang river basin is in the range of 50 to 200. And the design frequency estimation result of PRFD of this study is in the range of 110 to 130. Therefore, the developed method for the estimation of PRFD and the design frequency for the administrative districts are used and the method for the watershed and the river channel are to be applied in the future study.

Quantitative assessment of spalling depth and width using statistical inference theory in underground openings (통계추론을 이용한 지하암반공동에서의 스폴링 깊이와 폭에 대한 정량적 평가)

  • Bang, Joon-Ho;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.1
    • /
    • pp.1-14
    • /
    • 2010
  • Until now, the evaluation method of spalling depth using Martin et al. (1999)'s linear regression relations has long been known applicable. However, it is not likely that the proposed equation is applicable to the openings other than circular type and mostly overpredict the spalling depth in comparison with actual spalling cases. Moreover, the evaluation method to estimate the spalling width has not been presented yet; it is essential to evaluate the spalling width in addition to the spalling depth, because the shape of the spalled region influences the choice of suitable rock reinforcement. In this study, linear regression equations, in which normalized spalling depth ($d_f/W_D$) and normalized spalling width ($w_f/W_D$) are functions of three spalling evaluation indices, ${\sigma}_1/{\sigma}_c,\;D_{is}(={\sigma}_{max}/{\sigma}_c)$ and ${\sigma}_{dev}/{\sigma}_{cm}$, are established based on in-situ spalling observations and CWFS simulation results. Confidence intervals of 95% using the statistical inference theory are used in verifying the reliability of linear regression equations. Spalling depth ($d_f$) and spalling width ($w_f$) predicted from the proposed linear regression relations, which take three spalling evaluation indices into account, showed reasonable match with in-situ observations by adopting weighting factors considering the degree of variance of linear regression relations.

Single-Channel Seismic Data Processing via Singular Spectrum Analysis (특이 스펙트럼 분석 기반 단일 채널 탄성파 자료처리 연구)

  • Woodon Jeong;Chanhee Lee;Seung-Goo Kang
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.2
    • /
    • pp.91-107
    • /
    • 2024
  • Single-channel seismic exploration has proven effective in delineating subsurface geological structures using small-scale survey systems. The seismic data acquired through zero- or near-offset methods directly capture subsurface features along the vertical axis, facilitating the construction of corresponding seismic sections. However, substantial noise in single-channel seismic data hampers precise interpretation because of the low signal-to-noise ratio. This study introduces a novel approach that integrate noise reduction and signal enhancement via matrix rank optimization to address this issue. Unlike conventional rank-reduction methods, which retain selected singular values to mitigate random noise, our method optimizes the entire singular value spectrum, thus effectively tackling both random and erratic noises commonly found in environments with low signal-to-noise ratio. Additionally, to enhance the horizontal continuity of seismic events and mitigate signal loss during noise reduction, we introduced an adaptive weighting factor computed from the eigenimage of the seismic section. To access the robustness of the proposed method, we conducted numerical experiments using single-channel Sparker seismic data from the Chukchi Plateau in the Arctic Ocean. The results demonstrated that the seismic sections had significantly improved signal-to-noise ratios and minimal signal loss. These advancements hold promise for enhancing single-channel and high-resolution seismic surveys and aiding in the identification of marine development and submarine geological hazards in domestic coastal areas.

The Comparison of Susceptibility Changes in 1.5T and3.0T MRIs due to TE Change in Functional MRI (뇌 기능영상에서의 TE값의 변화에 따른 1.5T와 3.0T MRI의 자화율 변화 비교)

  • Kim, Tae;Choe, Bo-Young;Kim, Euy-Neyng;Suh, Tae-Suk;Lee, Heung-Kyu;Shinn, Kyung-Sub
    • Investigative Magnetic Resonance Imaging
    • /
    • v.3 no.2
    • /
    • pp.154-158
    • /
    • 1999
  • Purpose : The purpose of this study was to find the optimum TE value for enhancing $T_2^{*}$ weighting effect and minimizing the SNR degradation and to compare the BOLD effects according to the changes of TE in 1.5T and 3.0T MRI systems. Materials and Methods : Healthy normal volunteers (eight males and two females with 24-38 years old) participated in this study. Each volunteer was asked to perform a simple finger-tapping task (sequential opposition of thumb to each of the other four fingers) with right hand with a mean frequency of about 2Hz. The stimulus was initially off for 3 images and was then alternatively switched on and off for 2 cycles of 6 images. Images were acquired on the 1.5T and 3.0T MRI with the FLASH (fast low angle shot) pulse sequence (TR : 100ms, FA : $20^{\circ}$, FOV : 230mm) that was used with 26, 36, 46, 56, 66, 76ms of TE times in 1.5T and 16, 26, 36, 46, 56, 66ms of TE in 3.0T MRI system. After the completion of scan, MR images were transferred into a PC and processed with a home-made analysis program based on the correlation coefficient method with the threshold value of 0.45. To search for the optimum TE value in fMRI, the difference between the activation and the rest by the susceptibility change for each TE was used in 1.5T and 3.0T respectively. In addition, the functional $T_2^{*}$ map was calculated to quantify susceptibility change. Results : The calculated optimum TE for fMRI was $61.89{\pm}2.68$ at 1.5T and $47.64{\pm}13.34$ at 3.0T. The maximum percentage of signal intensity change due to the susceptibility effect inactivation region was 3.36% at TE 66ms in 1.5T 10.05% at TE 46ms in 3.0T, respectively. The signal intensity change of 3.0T was about 3 times bigger than of 1.5T. The calculated optimum TE value was consistent with TE values which were obtained from the maximum signal change for each TE. Conclusion : In this study, the 3.0T MRI was clearly more sensitive, about three times bigger than the 1.5T in detecting the susceptibility due to the deoxyhemoglobin level change in the functional MR imaging. So the 3.0T fMRI I ore useful than 1.5T.

  • PDF

Water Balance Projection Using Climate Change Scenarios in the Korean Peninsula (기후변화 시나리오를 활용한 미래 한반도 물수급 전망)

  • Kim, Cho-Rong;Kim, Young-Oh;Seo, Seung Beom;Choi, Su-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.8
    • /
    • pp.807-819
    • /
    • 2013
  • This study proposes a new methodology for future water balance projection considering climate change by assigning a weight to each scenario instead of inputting future streamflows based on GCMs into a water balance model directly. K-nearest neighbor algorithm was employed to assign weights and streamflows in non-flood period (October to the following June) was selected as the criterion for assigning weights. GCM-driven precipitation was input to TANK model to simulate future streamflow scenarios and Quantile Mapping was applied to correct bias between GCM hindcast and historical data. Based on these bias-corrected streamflows, different weights were assigned to each streamflow scenarios to calculate water shortage for the projection periods; 2020s (2010~2039), 2050s (2040~2069), and 2080s (2070~2099). As a result by applying the proposed methodology to project water shortage over the Korean Peninsula, average water shortage for 2020s is projected to increase to 10~32% comparing to the basis (1967~2003). In addition, according to getting decreased in streamflows in non-flood period gradually by 2080s, average water shortage for 2080s is projected to increase up to 97% (516.5 million $m^3/yr$) as maximum comparing to the basis. While the existing research on climate change gives radical increase in future water shortage, the results projected by the weighting method shows conservative change. This study has significance in the applicability of water balance projection regarding climate change, keeping the existing framework of national water resources planning and this lessens the confusion for decision-makers in water sectors.