• Title/Summary/Keyword: Weighting function

Search Result 520, Processing Time 0.025 seconds

Design of a Robust Tracking Controller by the Estimation of Vibration Quantity (진동량 추정을 통한 강인 트랙킹 제어기의 설계)

  • Lee, Moon-Noh;Jin, Kyoung-Bog;Yun, Ki-Bong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.9
    • /
    • pp.856-860
    • /
    • 2007
  • This paper presents a robust tracking controller design method for the track-following system of an optical recording device. A tracking loop gain adjustment algorithm is introduced to accurately estimate the tracking vibration quantity in spite of the uncertainties of the tracking actuator. A minimum tracking open-loop gain is calculated by the estimated tracking vibration quantity and a tolerable limit of tracking error. A robust tracking controller is designed by considering a robust $H_\infty$ control problem with the weighting function of a slightly larger gain than the minimum tracking open-loop gain. The proposed controller design method is applied to the track-following system of an optical recording device and is evaluated through the experimental result.

Shape Optimization of Heat Transfer Surfaces with Staggered Ribs To Enhance Thrbulent Heat Transfer (난류열전달 향상을 위한 엇갈린 리브가 부착된 열전달면의 형상최적설계)

  • Kim, Hong-Min;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1351-1359
    • /
    • 2003
  • This study presents a numerical procedure to optimize shape of streamwise periodic ribs mounted on both of the principal walls to enhance turbulent heat transfer in a rectangular channel flow. The response surface method is used as an optimization technique. The optimization is based on Navier-Stokes analysis of flow and heat transfer with $k-{\varepsilon}$ turbulence model. The width-to-height ratio of a rib, rib height-to-channel height ratio and rib pitch to rib height ratio are chosen as design variables. The object function is defined as a function of heat transfer coefficient and friction drag coefficient with weighting factor. Optimum shapes of the rib have been obtained for the range of 0.02 to 0.1 of weighting factor.

Numerical Optimization of Heat Transfer Surfaces with Staggered Ribs (엇갈린 리브가 부착된 열전달면의 수치최적설계)

  • Kim, Hong-Min;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.735-740
    • /
    • 2003
  • In this study, a numerical optimization to find the optimal shape of streamwise periodic ribs mounted on both of the principal walls is performed to enhance turbulent heat transfer in a rectangular channel. The optimization is based on Navier-Stokes analysis of flow and heat transfer with $k-{\varepsilon}$ turbulence model and is implemented using response surface method. The width-to-height ratio of a rib, rib height-to-channel height ratio, rib pitch to rib height ratio and distance between opposite ribs to rib height ratio are chosen as design variables. The object function is defined as a function of heat transfer coefficient and friction drag coefficient with weighting factor. Optimum shapes of the rib have been investigated for the range of 0.0 to 0.1 of weighting factor.

  • PDF

Non-Local Mean based Post Processing Scheme for Performance Enhancement of Image Interpolation Method (이미지 보간기법의 성능 개선을 위한 비국부평균 기반의 후처리 기법)

  • Kim, Donghyung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.3
    • /
    • pp.49-58
    • /
    • 2020
  • Image interpolation, a technology that converts low resolution images into high resolution images, has been widely used in various image processing fields such as CCTV, web-cam, and medical imaging. This technique is based on the fact that the statistical distributions of the white Gaussian noise and the difference between the interpolated image and the original image is similar to each other. The proposed algorithm is composed of three steps. In first, the interpolated image is derived by random image interpolation. In second, we derive weighting functions that are used to apply non-local mean filtering. In the final step, the prediction error is corrected by performing non-local mean filtering by applying the selected weighting function. It can be considered as a post-processing algorithm to further reduce the prediction error after applying an arbitrary image interpolation algorithm. Simulation results show that the proposed method yields reasonable performance.

Determination of Cost Function in Disparity Space Image (변이공간영상에서의 비용 함수의 결정)

  • Park, Jun-Hee;Lee, Byung-Uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5C
    • /
    • pp.530-535
    • /
    • 2007
  • Disparity space image (DSI) technique is a method of establishing correspondence between a pair of images. It has a merit of generating a dense disparity map for each pixel. DSI has a cost function to be minimized, and it needs empirical weighting factors for occlusion penalty and match reward. This paper provides theoretical basis for the weighting factors, which depend on image noise and contrast between an object and background.

A Robust Track-following Control for the Stable Coarse Seek (안정적인 조동 검색을 위한 강인 트랙 추종 제어)

  • Lee, Moon-Noh;Jin, Kyoung-Bog
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.3
    • /
    • pp.279-286
    • /
    • 2010
  • In this paper, we provide a robust track-following controller design method for the stable coarse seek control. Due to the inaccurate velocity control during a coarse seek, the shake of fine actuator is generated and thus a gain-up track-following control is required to complete stably the coarse seek. To this end, a loop gain adjustment algorithm is introduced to estimate accurately the shake of fine actuator. A weighting function can be properly selected from a minimum tracking gain-up open-loop gain, calculated from the estimated shake quantity of fine actuator. A robust tracking gain-up controller is designed by considering a robust $H_{\infty}$ control problem using the weighting function. The proposed design method is applied to the coarse seek control system of an optical rewritable drive and is evaluated through the experimental results.

Model Predictive Torque Control of Surface Mounted Permanent Magnet Synchronous Motor Drives with Voltage Cost Functions

  • Zhang, Xiaoguang;Hou, Benshuai;He, Yikang;Gao, Dawei
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1369-1379
    • /
    • 2018
  • In this paper, a model predictive torque control (MPTC) without the use of a weighting factor for surface mounted permanent-magnet synchronous machine (SPMSM) drive systems is presented. Firstly, the desired voltage vector is predicted in real time according to the principles of deadbeat torque and flux control. Then the sector of this desired voltage vector is determined. The complete enumeration for testing all of the feasible voltage vectors is avoided by testing only the candidate vectors contained in the sector. This means that only two voltage vectors in the sector need to be tested for selecting the optimal voltage vector in each control period. Thus, the calculation time can be reduced when compared with the conventional enumeration method. On the other hand, a novel cost function that only includes the dq-axis voltage errors between the desired voltage and candidate voltage is designed to eliminate the weighting factor used in the conventional MPTC. Thus, the control complexity caused by the tuning of the weighting factor is effectively decreased when compared with the conventional MPTC. Simulation and experimental investigation have been carried out to verify the proposed method.

Development of a potential evaluation method for urban expansion using GIS and RS technologies (GIS와 RS를 이용한 도시확산 포텐셜 평가기법의 개발)

  • Kim, Dae-Sik;Chung, Ha-Woo
    • Journal of Korean Society of Rural Planning
    • /
    • v.10 no.3 s.24
    • /
    • pp.41-51
    • /
    • 2004
  • This study aims to develop a potential evaluation method for urban spatial expansion using remote sensing (RS) and geographic information system (GIS). A multi-criteria evaluation method with several criteria and their weighting values was introduced to evaluate the score and quantification of the potential surface around the existing cities. The six criteria with one geographic factor, slope, and five accessibility factors, time distance from center of the city, national road, interchange of expressway, a big city, and station, were defined for the potential. RS techniques were applied for classification of the actual urban expansion maps between two periods, and GIS functions were used for score of accessibility criteria with a distance decay function from geographic, road and several point maps, which was developed in this study. The new methodology was applied to a test area, Suwon, between 1986 and 1996. In order to optimize the six weighting values, this study made new findings to search the optimal combination of the weighting values from new methodology, weighted scenario method for intensity order (WSM), combined with intensity order and AHP method, including a trial and error method for sensitivity analysis to make the intensity order. The optimal combination of the weighting values by the new method generated the optimal potential surface, considering spatial trend of urban expansion in the test area.

Estimation of Quantitative Precipitation Rate Using an Optimal Weighting Method with RADAR Estimated Rainrate and AWS Rainrate (RADAR 추정 강수량과 AWS 강수량의 최적 결합 방법을 이용한 정량적 강수량 산출)

  • Oh, Hyun-Mi;Heo, Ki-Young;Ha, Kyung-Ja
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.485-493
    • /
    • 2006
  • This study is to combine precipitation data with different spatial-temporal characteristics using an optimal weighting method. This optimal weighting method is designed for combination of AWS rain gage data and S-band RADAR-estimated rain data with weighting function in inverse proportion to own mean square error for the previous time step. To decide the optimal weight coefficient for optimized precipitation according to different training time, the method has been performed on Changma case with a long spell of rainy hour for the training time from 1 hour to 10 hours. Horizontal field of optimized precipitation tends to be smoothed after 2 hours training time, and then optimized precipitation has a good agreement with synoptic station rainfall assumed as true value. This result suggests that this optimal weighting method can be used for production of high-resolution quantitative precipitation rate using various data sets.

Development of the Best Spherical Interpolation Method for Estimating Potential Natural Vegetation Distribution of the Globe (지구(地球)의 잠재자연식생분포(潜在自然植生分布)를 추정(推定)하기 위한 최적구면보간법(最適球面補間法)의 개발(開發))

  • Cha, Gyung Soo;Ochiai, Kamiya
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.1
    • /
    • pp.17-24
    • /
    • 1997
  • As the first step to estimate the potential natural vegetation distribution of the globe, the best spherical interpolation method was developed to the temperature and precipitation which have close relation to the distribution pattern of world natural vegetation. For developing the interpolation method, a named Light Climatic Dataset composed of 1,060 stations around the globe was randomly divided into halves of feeding side and target side. The discrepancy between the observed and estimated values at the target stations was compared with combinations of parameters and methods. The estimated values were calculated to each combination which is all-out, constant radius and constant station methods in the selection of the feeding stations, n square reciprocal and negative exponential functions in weighting function of distance between feeding stations and each target, and oval weighting in direction of the feeding stations from each target. As a result, it turned out that the spherical interpolation with negative exponential weighting function fed from the constant radius stations ovally weighed yields the best estimates both for temperature and for precipitation. The parameters for temperature are $30^{\circ}$ in constant radius, 0.78 in negative exponential function and 0.4 in oval weighting, and for precipitation are $30^{\circ}$, 0.53 and 0.4, respectively.

  • PDF