• Title/Summary/Keyword: Weighted bootstrap

Search Result 13, Processing Time 0.02 seconds

Quantification of Heterogenous Background Fractures in Bedrocks of Gyeongju LILW Disposal Site (경주 방폐장의 불균질 배경 단열의 정량화)

  • Cho, Hyunjin;Cheong, Jae-Yeol;Lim, Doo-hyun;Hamm, Se-Yeong
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.463-474
    • /
    • 2017
  • Heterogeneous background fractures of granite and sedimentary rocks in Gyeongju LILW (low-intermediate level radioactive waste) facility area have been characterized quantitatively by analyzing fracture parameters (orientation, intensity, and size). Surface geological survey, electrical resistivity survey, and acoustic televiewer log data were used to characterize the heterogeneity of background fractures. Bootstrap method was applied to represent spatial anisotropy of variably oriented background fractures in the study area. As a result, the fracture intensity was correlated to the inverse distance from the faults weighted by nearest fault size and the mean value of electrical resistivity and the average volumetric fracture intensity ($P_{32}$) was estimated as $3.1m^2/m^3$. Size (or equivalent radius) of the background fractures ranged from 1.5 m to 86 m and followed to power-law distribution based on the fractal property of fracture size, using fractures measured on underground silos and identified surface faults.

Metagenomic Approach to Identifying Foodborne Pathogens on Chinese Cabbage

  • Kim, Daeho;Hong, Sanghyun;Kim, You-Tae;Ryu, Sangryeol;Kim, Hyeun Bum;Lee, Ju-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.227-235
    • /
    • 2018
  • Foodborne illness represents a major threat to public health and is frequently attributed to pathogenic microorganisms on fresh produce. Recurrent outbreaks often come from vegetables that are grown close to or within the ground. Therefore, the first step to understanding the public health risk of microorganisms on fresh vegetables is to identify and describe microbial communities. We investigated the phyllospheres on Chinese cabbage (Brassica rapa subsp. pekinensis, N = 54). 16S rRNA gene amplicon sequencing targeting the V5-V6 region of 16S rRNA genes was conducted by employing the Illumina MiSeq system. Sequence quality was assessed, and phylogenetic assessments were performed using the RDP classifier implemented in QIIME with a bootstrap cutoff of 80%. Principal coordinate analysis was performed using a weighted Fast UniFrac matrix. The average number of sequence reads generated per sample was 34,584. At the phylum level, bacterial communities were composed primarily of Proteobacteria and Bacteroidetes. The most abundant genera on Chinese cabbages were Chryseobacterium, Aurantimonadaceae_g, Sphingomonas, and Pseudomonas. Diverse potential pathogens, such as Pantoea, Erwinia, Klebsiella, Yersinia, Bacillus, Staphylococcus, Salmonella, and Clostridium were also detected from the samples. Although further epidemiological studies will be required to determine whether the detected potential pathogens are associated with foodborne illness, our results imply that a metagenomic approach can be used to detect pathogenic bacteria on fresh vegetables.

Analysis of Microbiota in Bellflower Root, Platycodon grandiflorum, Obtained from South Korea

  • Kim, Daeho;Hong, Sanghyun;Na, Hongjun;Chun, Jihwan;Guevarra, Robin B.;Kim, You-Tae;Ryu, Sangryeol;Kim, Hyeun Bum;Lee, Ju-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.4
    • /
    • pp.551-560
    • /
    • 2018
  • Bellflower root (Platycodon grandiflorum), which belongs to the Campanulaceae family, is a perennial grass that grows naturally in Korea, northeastern China, and Japan. Bellflower is widely consumed as both food and medicine owing to its high nutritional value and potential therapeutic effects. Since foodborne disease outbreaks often come from vegetables, understanding the public health risk of microorganisms on fresh vegetables is pivotal to predict and prevent foodborne disease outbreaks. We investigated the microbial communities on the bellflower root (n = 10). 16S rRNA gene amplicon sequencing targeting the V6-V9 regions of 16S rRNA genes was conducted via the 454-Titanium platform. The sequence quality was checked and phylogenetic assessments were performed using the RDP classifier implemented in QIIME with a bootstrap cutoff of 80%. Principal coordinate analysis was performed using the weighted Fast UniFrac distance. The average number of sequence reads generated per sample was 67,192 sequences. At the phylum level, bacterial communities from the bellflower root were composed primarily of Proteobacteria, Firmicutes, and Actinobacteria in March and September samples. Genera Serratia, Pseudomonas, and Pantoea comprised more than 54% of the total bellflower root bacteria. Principal coordinate analysis plots demonstrated that the microbial community of bellflower root in March samples was different from those in September samples. Potential pathogenic genera, such as Pantoea, were detected in bellflower root samples. Even though further studies will be required to determine if these species are associated with foodborne illness, our results indicate that the 16S rRNA gene-based sequencing approach can be used to detect pathogenic bacteria on fresh vegetables.