• Title/Summary/Keyword: Weighted Value Analysis

Search Result 315, Processing Time 0.033 seconds

Weighted Parameter Analysis of L1 Minimization for Occlusion Problem in Visual Tracking (영상 추적의 Occlusion 문제 해결을 위한 L1 Minimization의 Weighted Parameter 분석)

  • Wibowo, Suryo Adhi;Jang, Eunseok;Lee, Hansoo;Kim, Sungshin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.101-103
    • /
    • 2016
  • Recently, the target object can be represented as sparse coefficient vector in visual tracking. Due to this reason, exploitation of the compressibility in the transform domain by using L1 minimization is needed. Further, L1 minimization is proposed to handle the occlusion problem in visual tracking, since tracking failures mostly are caused by occlusion. Furthermore, there is a weighted parameter in L1 minimization that influences the result of this minimization. In this paper, this parameter is analyzed for occlusion problem in visual tracking. Several coefficients that derived from median value of the target object, mean value of the arget object, the standard deviation of the target object are, 0, 0.1, and 0.01 are used as weighted parameter of L1 minimization. Based on the experimental results, the value which is equal to 0.1 is suggested as weighted parameter of L1 minimization, due to achieved the best result of success rate and precision performance parameter. Both of these performance parameters are based on one pass evaluation (OPE).

  • PDF

SNR and ADC Changes at Increasing b Values among Patients with Lumbar Vertebral Compression Fracture on 1.5T MR Diffusion Weighted Images (1.5T MR 기기를 이용한 확산강조영상에서 b Value의 증가에 따른 요추압박골절 환자의 신호대 잡음비와 현성 확산 계수의 변화)

  • Cho, Jae-Hwan;Park, Cheol-Soo;Lee, Sun-Yeob;Kim, Bo-Hui
    • Progress in Medical Physics
    • /
    • v.21 no.1
    • /
    • pp.52-59
    • /
    • 2010
  • To examine among patients with vertebral compression fracture the extent to which signal-to-noise ratio (SNR) and Apparent Diffusion Coefficient (ADC) values at the lumbar vertebral compression fracture site vary on diffusion-weighted MR images according to varying b values on the 1.5T MR device. Diffusion-weighted MR images of 30 patients with compression fracture due to chronic osteoporosis who underwent vertebral MRI from Jan. 2008 to Nov. 2009 were respectively obtained using a 1.5-T MR scanner with the b values increased from 400, 600, 800, 1,000 to $1,200\;s/mm^2$. For diffusion-weighted MR images with different b values, the signal-to-noise ratio (SNR) was assessed at three sites: the site of compression fracture of the lumbar vertebral body at L1 to L5, and both the upper and lower discs of the said fracture site, while for ADC map images with different b values, the SNR and ADC were respectively assessed at those three sites. As a quantitative analysis, diffusion-weighted MR images and ADC map images with b value of $400\;s/mm^2$ (the base b values) were respectively compared with the corresponding images with each different b value. As far as qualitative analysis is concerned, for both diffusion-weighted MR and ADC map images with b value of $400\;s/mm^2$, the extent to which signal intensity values obtained at the site of compression fracture of the lumbar vertebral body at L1 to L5 vary according to the increasing b values were examined. The quantitative analysis found that for both diffusion-weighted MR and ADC map images, as the b values increased, the SNR were relatively lowered at all the three sites, compared to the base b value. Also, it was found that as the b values increased, ADC valueswere relatively lowered at all the three sites on ADC map images. On the other hand, the qualitative analysis found that as the b values increased to more than $400\;s/mm^2$, the signal intensity gradually decreased at all the sites, while at the levels of more than $1,000\;s/mm^2$, severe image noises appeared at all of the three sites. In addition, higher signal intensity was found at the site of compression fracture of the lumbar vertebral body than at the discs. Findings showed that with the b value being increased, both the signal-to-noise ratio (SNR) and Apparent Diffusion Coefficient (ADC) values gradually decreased at all the sites of the lumbar vertebral compression fracture and both the upper and lower discs of the fracture site, suggesting that there is a possibility of a wider range of applications to assessment of various vertebral pathologies by utilizing multi b values in the diffusion-weighted MRI examination.

Camparision and Analysis about the Weighted-Ordinate Colorimetric Method and the Direct Colorimetric Method of Halftone Dot Printing Colors (망점색인쇄물의 분광측색법과 자극치직독측색법에 대한 비교분석)

  • SangNamLee
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.6 no.1
    • /
    • pp.13-39
    • /
    • 1988
  • Test colors are halftone dot printed at the rate of 10% halftone dot area by process inksblack, cyan, magenta and yellow ink. Reproduced colors are measured by the weighted-ordinate colorimetric method and the direct colorimetric method. The weighted-ordinate colorimetric method compare favorably with the direct colorimetric method, because the former has good regular changes of tristimuIus values, chromacity coordinates, excitation purities, value functions and has smaller errors of dominant and complementary wavelengths than the latter. All test colors classify with the Munsell renotation.tation.

  • PDF

Heuristic Process Capability Indices Using Distribution-decomposition Methods (분포분할법을 이용한 휴리스틱 공정능력지수의 비교 분석)

  • Chang, Youngsoon
    • Journal of Korean Society for Quality Management
    • /
    • v.41 no.2
    • /
    • pp.233-248
    • /
    • 2013
  • Purpose: This study develops heuristic process capability indices (PCIs) using distribution-decomposition methods and evaluates the performances. The heuristic methods decompose the variation of a quality characteristic into upper and lower deviations and adjust the value of the PCIs using decomposed deviations in accordance with the skewness. The weighted variance(WV), new WV(NWV), scaled WV(SWV), and weighted standard deviation(WSD) methods are considered. Methods: The performances of the heuristic PCIs are investigated under the varied situations such as various skewed distributions, sample sizes, and specifications. Results: WV PCI is the best under the normal populations, WSD and SWV PCIs are the best under the low skewed populations, NWV PCI is the best under the moderate and high skewed populations. Conclusion: Comprehensive analysis shows that the NWV method is most adequate for a practical use.

The quantitative analysis of Diffusion Weighted Imaging in Breast MRI (유방 MRI 검사에서 확산강조영상의 정량적 분석)

  • Cho, Jae-Hwan;Kim, Hyeon-Ju;Hong, Yin-Sik;Lee, Hae-Kag
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.3
    • /
    • pp.149-154
    • /
    • 2011
  • The purpose of this study was to examine the usefulness of diffusion weighted images in breast MRI by performing a quantitative comparative analysis in patients diagnosed with DCIS. On a 3.0T MR scanner, diffusion weighted images and ADC map images were obtained from 20 patients histologically diagnosed with ductal carcinoma in situ (DCIS). The findings from the quantitative image analysis are the following: The diffusion weighted images showed higher SNR and CNR at the lesion area. In addition, the ADC values were lower at the lesion area.

The Comparative Analysis Study and Usability Assessment of Fat Suppressed 3D T2* weighted Technique and Fat Suppressed 3D SPGR Technique when Examining MRI for Knee Joint Cartilage Assesment (슬관절 연골 평가를 위한 자기공명영상 검사 시 지방 신호 억제 3D T2* Weighted 기법과 지방 신호 억제 3D SPGR 기법의 비교 및 유용성 평가)

  • Kang, Sung-Jin
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.6
    • /
    • pp.219-225
    • /
    • 2016
  • In this study, for assessment of degenerative knee joint cartilage disease we acquired images by fat suppressed 3D spoiled gradient recalled (SPGR) and fat suppressed 3D $T2^*$ weighted imaging techniques. To do a quantitative evaluation, the knee joint cartilage was divided into medial femoral cartilage (MFC), medial tibial cartilage (MTC), lateral femoral cartilage (LFC), lateral femoral cartilage (LFC) and patella cartilage (Pat) to measure their respective signal intensity values, signal-to-noise ratio, and contrast-to-noise ratio. As for the measured values, statistical significance between two techniques was verified by using Mann-Whitney U-Test. To do a qualitative evaluation, two radiologists have examined images by techniques after which image artifact, cartilage surface, tissue contrast, and depiction of lesion distinguishing were evaluated based on 4-point scaling (1: bad, 2: appropriate, 3: good, 4: excellent), and based on the result, statistical significance was verified by using Kappa-value Test. 3.0T MR system and HD T/R 8ch knee array coil were used to acquire images. As a result of a quantitative analysis, based on SNR values measured by using two imaging techniques, MFC, LFC, LTC, and Pat showed statistical significance (p < 0.05), but MTC did not (p > 0.05). As a result of verifying statistical significance for measured CNR value, MFC, LFC, and Pat showed statistical significance (p < 0.05), while MTC and LTC did not show statistical significance (p > 0.05). As a result of a qualitative analysis, by comparing mean values for evaluated image items, 3D $T2^*$ weighted Image has indicated a slightly higher value. As for conformance verification between the two observers by using Kappa-value test, all evaluated items have indicated statistically significant results (p < 0.05). 3D $T2^*$ weighted technique holds a clinical value equal to or superior to 3D SPGR technique with respect to evaluating images, such as distinguishing knee joint cartilages, comparing nearby tissues contrast, and distinguishing lesions.

Equivalence study of canonical correspondence analysis by weighted principal component analysis and canonical correspondence analysis by Gaussian response model (가중주성분분석을 활용한 정준대응분석과 가우시안 반응 모형에 의한 정준대응분석의 동일성 연구)

  • Jeong, Hyeong Chul
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.6
    • /
    • pp.945-956
    • /
    • 2021
  • In this study, we considered the algorithm of Legendre and Legendre (2012), which derives canonical correspondence analysis from weighted principal component analysis. And, it was proved that the canonical correspondence analysis based on the weighted principal component analysis is exactly the same as Ter Braak's (1986) canonical correspondence analysis based on the Gaussian response model. Ter Braak (1986)'s canonical correspondence analysis derived from a Gaussian response curve that can explain the abundance of species in ecology well uses the basic assumption of the species packing model and then conducts generalized linear model and canonical correlation analysis. It is derived by way of binding. However, the algorithm of Legendre and Legendre (2012) is calculated in a method quite similar to Benzecri's correspondence analysis without such assumptions. Therefore, if canonical correspondence analysis based on weighted principal component analysis is used, it is possible to have some flexibility in using the results. In conclusion, this study shows that the two methods starting from different models have the same site scores, species scores, and species-environment correlations.

Study of Apparent Diffusion Coefficient Changes According to Spinal Disease in MR Diffusion-weighted Image

  • Heo, Yeong-Cheol;Cho, Jae-Hwan
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.146-149
    • /
    • 2017
  • In this study, we compared the standardized value of each signal intensity, the apparent diffusion coefficient (ADC) that digitizes the diffusion of water molecules, and the signal to noise ratio (SNR) using b value 0 400, 1400 ($s/mm^2$). From March 2013 to December 2013, patients with suspicion of simple compound fracture and metastatic spine cancer were included in the MR readout. We used a 1.5 Tesla Achieva MRI system and a Syn-Spine Coil. Sequence is a DWI SE-EPI sagittal (diffusion weighted imaging spin echo-echo planar imaging sagittal) image with b-factor ($s/mm^2$) 0, 400, 1400 were used. Data analysis showed ROI (Region of Interest) in diseased area with high SI (signal intensity) in diffusion-weighted image b value 0 ($s/mm^2$) Using the MRIcro program, each SI was calculated with images of b-value 0, 400, and 1400 ($s/mm^2$), ADC map was obtained using Metlab Software with each image of b-value, The ADC is obtained by applying the ROI to the same position. The standardized values ($SI_{400}/SI_0$, $SI_{400}/SI_0$) of simple compression fractures were $0.47{\pm}0.04$ and $0.23{\pm}0.03$ and the standardized values ($SI_{400}/SI_0$, $SI_{400}/SI_0$) of the metastatic spine were $0.57{\pm}0.07$ and $0.32{\pm}0.08$ And the standardized values of the two diseases were statistically significant (p < 0.05). The ADC ($mm^2/s$) for b value 400 ($s/mm^2$) and 1400 ($s/mm^2$) of the simple compression fracture disease site were $1.70{\pm}0.16$ and $0.93{\pm}0.28$ and $1.24{\pm}0.21$ and $0.80{\pm}0.15$ for the metastatic spine. The ADC ($mm^2/s$) for b value 400($s/mm^2$) was statistically significant (p < 0.05) but the ADC ($mm^2/s$) for b value 1400 (p > 0.05). In conclusion, multi - b value recognition of signal changes in diffusion - weighted imaging is very important for the diagnosis of various spinal diseases.

Benign versus Malignant Soft-Tissue Tumors: Differentiation with 3T Magnetic Resonance Image Textural Analysis Including Diffusion-Weighted Imaging

  • Lee, Youngjun;Jee, Won-Hee;Whang, Yoon Sub;Jung, Chan Kwon;Chung, Yang-Guk;Lee, So-Yeon
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.2
    • /
    • pp.118-128
    • /
    • 2021
  • Purpose: To investigate the value of MR textural analysis, including use of diffusion-weighted imaging (DWI) to differentiate malignant from benign soft-tissue tumors on 3T MRI. Materials and Methods: We enrolled 69 patients (25 men, 44 women, ages 18 to 84 years) with pathologically confirmed soft-tissue tumors (29 benign, 40 malignant) who underwent pre-treatment 3T-MRI. We calculated MR texture, including mean, standard deviation (SD), skewness, kurtosis, mean of positive pixels (MPP), and entropy, according to different spatial-scale factors (SSF, 0, 2, 4, 6) on axial T1- and T2-weighted images (T1WI, T2WI), contrast-enhanced T1WI (CE-T1WI), high b-value DWI (800 sec/mm2), and apparent diffusion coefficient (ADC) map. We used the Mann-Whitney U test, logistic regression, and area under the receiver operating characteristic curve (AUC) for statistical analysis. Results: Malignant soft-tissue tumors had significantly lower mean values of DWI, ADC, T2WI and CE-T1WI, MPP of ADC, and CE-T1WI, but significantly higher kurtosis of DWI, T1WI, and CE-T1WI, and entropy of DWI, ADC, and T2WI than did benign tumors (P < 0.050). In multivariate logistic regression, the mean ADC value (SSF, 6) and kurtosis of CE-T1WI (SSF, 4) were independently associated with malignancy (P ≤ 0.009). A multivariate model of MR features worked well for diagnosis of malignant soft-tissue tumors (AUC, 0.909). Conclusion: Accurate diagnosis could be obtained using MR textural analysis with DWI and CE-T1WI in differentiating benign from malignant soft-tissue tumors.

Frequency Control of in Hybrid Wind Power System using Flywheel Energy Storage System

  • Lee, Jeong-Phil;Kim, Han-Guen
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.229-234
    • /
    • 2014
  • In this paper, a design problem of the flywheel energy storage system controller using genetic algorithm (GA) is investigated for a frequency control of the wind diesel hybrid power generation system in an isolated power system. In order to select parameters of the FESS controller, two performance indexes are used. We evaluated a frequency control effect for the wind diesel hybrid power system according to change of the weighted values of a performance index. To verify performance of the FESS controller according to the weighted value of the performance index, the frequency domain analysis using a singular value bode diagram and the dynamic simulations for various weighted values of performance index were performed. To verify control performance of the designed FESS controller, the eigenvalue analysis and the dynamic simulations were performed. The control characteristics with the two designed FESS controller were compared with that of the conventional pitch controller. The simulation results showed that the FESS controller provided better dynamic responses in comparison with the conventional controller.