• Title/Summary/Keyword: Weighted Support Vector Machine

Search Result 48, Processing Time 0.026 seconds

Weighted Support Vector Machines for Heteroscedastic Regression

  • Park, Hye-Jung;Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.467-474
    • /
    • 2006
  • In this paper we present a weighted support vector machine(SVM) and a weighted least squares support vector machine(LS-SVM) for the prediction in the heteroscedastic regression model. By adding weights to standard SVM and LS-SVM the better fitting ability can be achieved when errors are heteroscedastic. In the numerical studies, we illustrate the prediction performance of the proposed procedure by comparing with the procedure which combines standard SVM and LS-SVM and wild bootstrap for the prediction.

  • PDF

Geographically weighted least squares-support vector machine

  • Hwang, Changha;Shim, Jooyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.1
    • /
    • pp.227-235
    • /
    • 2017
  • When the spatial information of each location is given specifically as coordinates it is popular to use the geographically weighted regression to incorporate the spatial information by assuming that the regression parameters vary spatially across locations. In this paper, we relax the linearity assumption of geographically weighted regression and propose a geographically weighted least squares-support vector machine for estimating geographically weighted mean by using the basic concept of kernel machines. Generalized cross validation function is induced for the model selection. Numerical studies with real datasets have been conducted to compare the performance of proposed method with other methods for predicting geographically weighted mean.

Asymmetric least squares regression estimation using weighted least squares support vector machine

  • Hwan, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.5
    • /
    • pp.999-1005
    • /
    • 2011
  • This paper proposes a weighted least squares support vector machine for asymmetric least squares regression. This method achieves nonlinear prediction power, while making no assumption on the underlying probability distributions. The cross validation function is introduced to choose optimal hyperparameters in the procedure. Experimental results are then presented which indicate the performance of the proposed model.

Weighted LS-SVM Regression for Right Censored Data

  • Kim, Dae-Hak;Jeong, Hyeong-Chul
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.3
    • /
    • pp.765-776
    • /
    • 2006
  • In this paper we propose an estimation method on the regression model with randomly censored observations of the training data set. The weighted least squares support vector machine regression is applied for the regression function estimation by incorporating the weights assessed upon each observation in the optimization problem. Numerical examples are given to show the performance of the proposed estimation method.

Fuzzy c-Regression Using Weighted LS-SVM

  • Hwang, Chang-Ha
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.161-169
    • /
    • 2005
  • In this paper we propose a fuzzy c-regression model based on weighted least squares support vector machine(LS-SVM), which can be used to detect outliers in the switching regression model while preserving simultaneous yielding the estimates of outputs together with a fuzzy c-partitions of data. It can be applied to the nonlinear regression which does not have an explicit form of the regression function. We illustrate the new algorithm with examples which indicate how it can be used to detect outliers and fit the mixed data to the nonlinear regression models.

  • PDF

Using weighted Support Vector Machine to address the imbalanced classes problem of Intrusion Detection System

  • Alabdallah, Alaeddin;Awad, Mohammed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.5143-5158
    • /
    • 2018
  • Improving the intrusion detection system (IDS) is a pressing need for cyber security world. With the growth of computer networks, there are constantly daily new attacks. Machine Learning (ML) is one of the most important fields which have great contribution to address the intrusion detection issues. One of these issues relates to the imbalance of the diverse classes of network traffic. Accuracy paradox is a result of training ML algorithm with imbalanced classes. Most of the previous efforts concern improving the overall accuracy of these models which is truly important. However, even they improved the total accuracy of the system; it fell in the accuracy paradox. The seriousness of the threat caused by the minor classes and the pitfalls of the previous efforts to address this issue is the motive for this work. In this paper, we consolidated stratified sampling, cost function and weighted Support Vector Machine (WSVM) method to address the accuracy paradox of ID problem. This model achieved good results of total accuracy and superior results in the small classes like the User-To-Remote and Remote-To-Local attacks using the improved version of the benchmark dataset KDDCup99 which is called NSL-KDD.

Estimating the Term Structure of Interest Rates Using Mixture of Weighted Least Squares Support Vector Machines (가중 최소제곱 서포트벡터기계의 혼합모형을 이용한 수익률 기간구조 추정)

  • Nau, Sung-Kyun;Shim, Joo-Yong;Hwang, Chang-Ha
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.1
    • /
    • pp.159-168
    • /
    • 2008
  • Since the term structure of interest rates (TSIR) has longitudinal data, we should consider as input variables both time left to maturity and time simultaneously to get a more useful and more efficient function estimation. However, since the resulting data set becomes very large, we need to develop a fast and reliable estimation method for large data set. Furthermore, it tends to overestimate TSIR because data are correlated. To solve these problems we propose a mixture of weighted least squares support vector machines. We recognize that the estimate is well smoothed and well explains effects of the third stock market crash in USA through applying the proposed method to the US Treasury bonds data.

Weighted Kernel and it's Learning Method for Cancer Diagnosis System (암진단시스템을 위한 Weighted Kernel 및 학습방법)

  • Choi, Gyoo-Seok;Park, Jong-Jin;Jeon, Byoung-Chan;Park, In-Kyu;Ahn, Ihn-Seok;Nguyen, Ha-Nam
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.2
    • /
    • pp.1-6
    • /
    • 2009
  • One of the most important problems in bioinformatics is how to extract the useful information from a huge amount of data, and make a decision in diagnosis, prognosis, and medical treatment applications. This paper proposes a weighted kernel function for support vector machine and its learning method with a fast convergence and a good classification performance. We defined the weighted kernel function as the weighted sum of a set of different types of basis kernel functions such as neural, radial, and polynomial kernels, which are trained by a learning method based on genetic algorithm. The weights of basis kernel functions in proposed kernel are determined in learning phase and used as the parameters in the decision model in classification phase. The experiments on several clinical datasets such as colon cancer indicate that our weighted kernel function results in higher and more stable classification performance than other kernel functions.

  • PDF

Estimation of nonlinear GARCH-M model (비선형 평균 일반화 이분산 자기회귀모형의 추정)

  • Shim, Joo-Yong;Lee, Jang-Taek
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.5
    • /
    • pp.831-839
    • /
    • 2010
  • Least squares support vector machine (LS-SVM) is a kernel trick gaining a lot of popularities in the regression and classification problems. We use LS-SVM to propose a iterative algorithm for a nonlinear generalized autoregressive conditional heteroscedasticity model in the mean (GARCH-M) model to estimate the mean and the conditional volatility of stock market returns. The proposed method combines a weighted LS-SVM for the mean and unweighted LS-SVM for the conditional volatility. In this paper, we show that nonlinear GARCH-M models have a higher performance than the linear GARCH model and the linear GARCH-M model via real data estimations.

Modeling mechanical strength of self-compacting mortar containing nanoparticles using wavelet-based support vector machine

  • Khatibinia, Mohsen;Feizbakhsh, Abdosattar;Mohseni, Ehsan;Ranjbar, Malek Mohammad
    • Computers and Concrete
    • /
    • v.18 no.6
    • /
    • pp.1065-1082
    • /
    • 2016
  • The main aim of this study is to predict the compressive and flexural strengths of self-compacting mortar (SCM) containing $nano-SiO_2$, $nano-Fe_2O_3$ and nano-CuO using wavelet-based weighted least squares-support vector machines (WLS-SVM) approach which is called WWLS-SVM. The WWLS-SVM regression model is a relatively new metamodel has been successfully introduced as an excellent machine learning algorithm to engineering problems and has yielded encouraging results. In order to achieve the aim of this study, first, the WLS-SVM and WWLS-SVM models are developed based on a database. In the database, nine variables which consist of cement, sand, NS, NF, NC, superplasticizer dosage, slump flow diameter and V-funnel flow time are considered as the input parameters of the models. The compressive and flexural strengths of SCM are also chosen as the output parameters of the models. Finally, a statistical analysis is performed to demonstrate the generality performance of the models for predicting the compressive and flexural strengths. The numerical results show that both of these metamodels have good performance in the desirable accuracy and applicability. Furthermore, by adopting these predicting metamodels, the considerable cost and time-consuming laboratory tests can be eliminated.