• Title/Summary/Keyword: Weighted CT Dose Index

Search Result 2, Processing Time 0.015 seconds

Evaluating polyester resin as a viable substitute for PMMA in computed tomography dosimetry phantoms

  • A. Khallouqi;A. Halimi;O. El rhazouani
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3758-3763
    • /
    • 2024
  • The current study aimed to evaluate the suitability of polyester resin as an alternative material to polymethyl methacrylate (PMMA) for computed tomography (CT) dosimetry phantoms using the GEANT4/GATE Monte Carlo simulation platform. Cylindrical phantoms (32 cm diameter) constructed of polyester resin and PMMA were simulated and compared in terms of atomic composition, effective atomic number, electron density, mass density, and photon interaction mechanisms. Weighted CT dose index (CTDIw) values were calculated for each phantom at 80, 110, and 130 kVp tube voltages based on measurements of CTDI100,c and CTDI100,p. Results demonstrated that the physical properties of polyester closely matched those of PMMA, and the polyester phantom displayed equivalent dosimetric behavior to the PMMA phantom at all tube voltages tested. CTDIw values from the polyester phantom were within 1.4 % of the PMMA phantom across all tube voltages. Conversion coefficients were derived to equate polyester CTDIw values to PMMA dose equivalents. This study found that a polyester resin phantom exhibited radiation dosimetry commensurate with the standard PMMA phantom for CT dose assessment. Consequently, polyester resin represents a viable substitute material when PMMA is unavailable for construction of CT dosimetry phantoms.

Deriving the Effective Atomic Number with a Dual-Energy Image Set Acquired by the Big Bore CT Simulator

  • Jung, Seongmoon;Kim, Bitbyeol;Kim, Jung-in;Park, Jong Min;Choi, Chang Heon
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.4
    • /
    • pp.171-177
    • /
    • 2020
  • Background: This study aims to determine the effective atomic number (Zeff) from dual-energy image sets obtained using a conventional computed tomography (CT) simulator. The estimated Zeff can be used for deriving the stopping power and material decomposition of CT images, thereby improving dose calculations in radiation therapy. Materials and Methods: An electron-density phantom was scanned using Philips Brilliance CT Big Bore at 80 and 140 kVp. The estimated Zeff values were compared with those obtained using the calibration phantom by applying the Rutherford, Schneider, and Joshi methods. The fitting parameters were optimized using the nonlinear least squares regression algorithm. The fitting curve and mass attenuation data were obtained from the National Institute of Standards and Technology. The fitting parameters obtained from stopping power and material decomposition of CT images, were validated by estimating the residual errors between the reference and calculated Zeff values. Next, the calculation accuracy of Zeff was evaluated by comparing the calculated values with the reference Zeff values of insert plugs. The exposure levels of patients under additional CT scanning at 80, 120, and 140 kVp were evaluated by measuring the weighted CT dose index (CTDIw). Results and Discussion: The residual errors of the fitting parameters were lower than 2%. The best and worst Zeff values were obtained using the Schneider and Joshi methods, respectively. The maximum differences between the reference and calculated values were 11.3% (for lung during inhalation), 4.7% (for adipose tissue), and 9.8% (for lung during inhalation) when applying the Rutherford, Schneider, and Joshi methods, respectively. Under dual-energy scanning (80 and 140 kVp), the patient exposure level was approximately twice that in general single-energy scanning (120 kVp). Conclusion: Zeff was calculated from two image sets scanned by conventional single-energy CT simulator. The results obtained using three different methods were compared. The Zeff calculation based on single-energy exhibited appropriate feasibility.