• Title/Summary/Keyword: Weight-loss wastewater

Search Result 22, Processing Time 0.016 seconds

Materialistic Characterization of Waste Egg Shell and Fundamental Studies for Its Application to Wastewater Treatment (폐달걀껍질의 활용을 위한 물성조사 및 폐수처리 응용에의 기초연구)

  • Kuh, Sung-Eun;Kim, Dong-Su
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.733-742
    • /
    • 2000
  • Fundamental materialistic characterization and adsorption/neutralization behavior of waste egg shell for heavy metal ion have been studied for its application to wastewater treatment. To investigate the structural change and thermal decomposition characteristics of egg shell. X-ray diffraction and FT-IR analysis were conducted for egg shell treated at $105^{\circ}C$ and $700^{\circ}C$, respectively. For the result of FT-IR analysis, the sample treated at $700^{\circ}C$ showed a reduced C-O absorption band compared with that of egg shell treated at $105^{\circ}C$, which may be due to the $CO_2$ release. Unlike to the result of FT-IR analysis, the XRD patterns of egg shell were almost similar for the cases of $105^{\circ}C$ and $700^{\circ}C$ treatment. however, characteristic diffraction pattern of CaO was observed for $850^{\circ}C$ treatment, at which $CaCO_3$ is known to be completely converted to CaO. TGA/DTA analysis showed a slow decline in weight loss up to $600^{\circ}C$ and, for $600{\sim}800^{\circ}C$ range, the weight loss became drastic by reason of $CO_2$ discharge, which was accompanied by an appearance of major endothermic peak. The ratio of practical breakthrough time to ideal one, total transfer unit, and mass transfer coefficient were observed to be increased as the adsorption was progressed in a multiple-column fixed-bed reactor using egg shell as an adsorbent, which signified the distribution effect of mass transfer for continuous adsorption reaction. The neutralization effect of egg shell for several types of acidic wastewater made of different mineral acids was not much different from each other except for the case of $H_2SO_4$, for which the neutralization reaction was thought to be retarded by the formation of gypsum.

  • PDF

Slurry Phase Decomposition of Food Waste by Using Various Microorganisms (미생물을 이용한 액상소멸방식의 음식물쓰레기 처리)

  • Kwon, Bum Gun;Na, Suk-Hyun;Lim, Hye-Jung;Lim, Chae-Sung;Chung, Seon-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.5
    • /
    • pp.303-310
    • /
    • 2014
  • This study investigated the reduction of food waste through the slurry phase decomposition in a source of food waste by microorganisms. The reactor used in the experiment was composed of both woodchip with wood material and sponges with polyurethane material as media of attached microorganisms, and food waste was mixed with a constant cycle consisted of a stirring device. During the experimental period of 100 days, the change in weight over the cumulative total amount of food waste added was reduced by 99%. Approximately, 1% of the residual food waste could be inherently recalcitrant materials (cellulose, hemicellulose, lignin, etc.) and thus was thought to be the result of the accumulation. The initial pH in wastewater generated from food waste was low with 3.3 and after 24 hours treatment this pH was increased to 5.8. The concentrations of COD, BOD, SS, salinity, TN and TP were gradually decreased. Food waste decay was proceeded by the seven species microorganisms identified and confirmed in this study, making a slurry phase and thus reducing residual food wastes. In the initial phase, the microbial population was approximately $3.3{\times}10^4$ cell/mL, and after 15 days this population was a constant with $5.1{\times}10^6$ cell/mL which means a certain stabilization for the reduction of food wastes. From these results, it can be considered that organic matter decomposition as well as the weight loss of food wastes by microorganisms is done at the same time.