• Title/Summary/Keyword: Weight table

Search Result 358, Processing Time 0.022 seconds

An analysis of the Effects of Software Industry on the Local Economy (소프트웨어산업이 지역경제에 미치는 영향 분석)

  • Kim, Shin-Pyo;Kim, Tea-Yeol;Jung, Su-Jin
    • Journal of Digital Convergence
    • /
    • v.9 no.6
    • /
    • pp.137-151
    • /
    • 2011
  • This dissertation aims to empirically analyze the effect of cultivation of software industry on the local economy through Inter-regional Software Input-Output Analysis. The temporal range of analysis of effect of software industry on the local economy shall be for the year 2005 since analysis is made on the basis of the Regional Industrial Input-Output Table published by the Bank of Korea in 2005, and spatial domain shall be limited to the 16 metropolitan cities and provinces, which are the standards for each administrative zone. Results of analysis of this dissertation are as follows. Firstly, average inverse matrix coefficient of software industry for each region was computed to be 1.6248, which is lower than the average inverse matrix coefficient of 1.7979 for the entire industries. Secondly, among these, inverse matrix coefficient of software industry for each region on other industry within the same region was 0.1794, which is higher than that of entire industries at 0.1382. However, average inverse matrix coefficients of software industry for each region on self-industry within the same region and entire industries in other regions were found to be 1.0119 and 0.4335, respectively, which is lower than those of entire industries at 1.0982 and 0.5616, respectively. Thirdly, domestic produces induced by final demand items of software industry for each region was the highest for Seoul with 17.3309 trillion Korean won, accounting for 81.0% of the total, followed by Gyeonggi with 2.3370 trillion Korean won, 10.9% of the total. Fourthly, distribution ratios of domestic produces induced by final demand items of software industry for each region were found to be 19.1%, 72.1% and 8.8% with respect to the weight of consumption, investment and export, respectively, thereby illustrating very high level of distribution ratios of domestic produces being induced by investment in comparison to the distribution ratios of domestic produces being induced for the entire industries at 47.3%, 19.8% and 32.9%, respectively.

Quality changes in Agaricus bisporus varieties due to period and temperature during their storage (양송이버섯 품종별 저장기간 및 온도에 따른 품질변화)

  • Oh, Youn-Lee;Jang, Kab-Yeul;Jhune, Chang-Sung;Kong, Won-Sik;Yoo, Young-Bok;Shin, Pyung-Gyun;Seo, Jang-Sun
    • Journal of Mushroom
    • /
    • v.11 no.3
    • /
    • pp.137-144
    • /
    • 2013
  • This study was carried out to investigate storage stability of harvested mushroom in developed varieties of button mushroom through identification of quality change during 35 days. The mushroom harvested up to $2^{nd}$ flush mushroom was stored on different storage temperature(4, 7, $10^{\circ}C$) and weight, length, thickness, color of pileus and stipe in fruit body was tested every 7 days. The morphological trait and color of stipe in fruit body were influenced by harvesting period and storage temperature. On the morphological traits of fruit body, mushroom harvested at $2^{nd}$ flush showed smaller difference than those at $1^{st}$ flush and mushroom stored at $4^{\circ}C$ indicated more difference than ones at the other temperature. Mostly color of pileus in brown button mushroom had lower ${\Delta}E$ (color difference) than white mushroom during storage period. The color of pileus of fruit body in white mushroom had low ${\Delta}E$ at $4^{\circ}C$ whereas that of brown mushroom was low at $10^{\circ}C$. The safe period of storage based on the L value is 7 days under a specified environmental condition. 'Seolgang' was stored for 14 days as good quality of mushroom, 'Saedo' had best quality after harvesting and 'Seojeong' was most stable during storage change in white mushroom varieties.

A Clustering of Physical Fitness according to the Skeletal Maturation of Elementary School Students : Focused on Cluster Analysis (초등학생의 골성숙도에 따른 체력 군집화 : 군집분석 중심으로)

  • Kim, Dae-Hoon;Yoon, Hyoung-ki;Oh, Sei-Yi;Lee, Young-Jun;Cho, Seok-Yeon;Song, Dae-Sik;Seo, Dong-Nyeuck;Kim, Ju-Won;Na, Gyu-Min;Kim, Min-Jun;Oh, ․Kyung-A
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.63-73
    • /
    • 2022
  • The aim of this study was to cluster according to the bone age of elementary school students in order to analyze the physique, physical fitness, and skeletal maturation of each cluter group and to provide basic data for the balanced development of elementary school students through data analysis. The subjects of this study were 2243 students aged 8 to 13 years, and the skeletal maturation were calculated by applying them to the TW3 method score conversion table after the X-ray films were taken. A total of 2 components in physique were measured using a stadiometer(Hanebio, Korea, 2021) and the Inbody 270(Biospace, Korea, 2019), and a total of 7 components in physical fitness, which included muscular strength(Hand Grip Strength), balance(Bass Stick Test), agility(Plate Tapping), power(Standing Long Jump), flexibility(Sit&Reach), muscular endurance(Sit-Up), and cardiovascular endurance(Shuttle Run) were measured as well. K-Means clustering method, cross-tabulation analysis, and one-way variable analysis(ANOVA) were conducted for data processing using the SPSS PC/Program(Version 26.0) and Bristics Studio Tool, and it was considered significant at the level of p< .05. The results of this study may be summarized as follow. First, as a result of clustering using three components of skeletal maturation: retarded, normal, and advanced, cluster 1(Retarded) showed excellence in muscular strength, balance, and agility. cluster 2(Normal) showed poor flexibility, whereas cluster 3(Advanced) showed excellence in muscular strength. Second, as a result of analyzing the differences in physique according to the clustering of elementary school students by their individual characteristics, cluster 3(Advanced) showed excellence in height, weight, and body fat percentage. Third, as a result of analyzing the differences in physical fitness according to the clustering of elementary school students by their individual characteristics, cluster 3(Advanced) showed excellence in Hand Grip Strength(Left, Right), whereas cluster 1(Retarded) showed excellence in Bass Stick Test, and cluster 3(Advanced) showed excellence in Standing Long Jump.

Developmental and Reproductive Characteristics of Mythimna loreyi (Noctuidae) Reared on Artificial Diets (인공사료로 사육한 뒷흰가는줄무늬밤나방(Mythimna loreyi ) (밤나방과)의 발육과 생식 특성)

  • Eun Young, Kim;I Hyeon, Kim;Jin Kyo, Jung
    • Korean journal of applied entomology
    • /
    • v.61 no.3
    • /
    • pp.423-434
    • /
    • 2022
  • The two previously developed artificial diets (N4 and N6) used for rearing Spodoptera frugiperda (Noctuidae) larvae, were selected as highly-fit ones for rearing Mythimna loreyi larvae. Almost all biological characteristics were not significantly different between the colonies reared on the two diets at 25℃ and 15:9 h (light:dark) photoperiod. The developmental periods were 4.9-5.2 days for eggs, and 22.3-23.2 days for larvae. The pupal period and weight were different between the sexes in each diet colony. The pupal periods in females and males showed 12.6-12.8 days and 14.1-14.5 days, respectively. The pupal weights were ca. 345 mg for females and ca. 380 mg for males. The pupation and emergence rates were ca. 91-94%, and ca. 91-95%, respectively, without significant differences between the two colonies. The pre-oviposition and oviposition periods were 3.4 days and 4.7-4.8 days, respectively. The adult longevity was 8.2 days in females and 10.3-12.4 days in males. Total offsprings produced were found to be 724-847 larvae on an average with ca. 1,400 maximum larvae. In the life table analysis, the intrinsic rates of increases (0.1181 for N4 and 0.1253 for N6) were not significantly different between the two colonies. Individual differences in the larval instar number 5 and 6 were found within a diet colony. The ratios of 5-instar larvae were ca. 22% in N4 colony and ca. 7% in N6 colony. The larval period of 6-instar larvae was longer than that of 5-instar larvae. Width of head capsule in larvae varied from ca. 309 ㎛ for 1st instar to ca. 3,065 ㎛ for 6th instar. Body lengths measured from ca. 2.0 mm for 1st instar to ca. 29.1 mm for 6th instar. Larvae of M. loreyi and M. separata were found at the same time in a maize field during June and July, 2020.

Studies on the Effects of Various Methods of Rotation Irrigation System Affecting on the Growth. Yield of Rice Plants and Its Optimum Facilities. (수환관개방법과 적정시설연구 (수환관개의 방법의 차이가 수축생육 및 수량에 미치는 영향과 그 적정시설에 관한 연구))

  • 이창구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.1
    • /
    • pp.1534-1548
    • /
    • 1969
  • This experiment was conducted, making use of the 'NONG-RIM6' arecommended variety of rice for the year of 1968. Main purposes of the experiment are to explore possibilities of; a) ways and means of saving irringation water and, b) overcoming drought at the same time so that an increased yield in rice could be resulted in. Specifically, it was tried to determine the effects of the Rotation irrigation method combined with differentiated thickness of lining upon the growth and yield of rice. Some of the major findings are summarized in the following. 1) The different thicknesses show a significant relationship with the weight of 1,000 grains. In the case of 9cm lined plot, the grain weight is 23.5grams, the heaviest. Next in order is 3cm lined plot, 6cm lined plot, control plot, and wheat straw lined-plot. 2) In rice yield, it is found that there is a considerably moderate significant relationship with both the different thickness of lining and the number of irrigation, as shown in the table. 3) There is little or no difference among different plots in terms of a) physical and chemical properties of soil, b) quality of irrigation water, c) climatic conditions, and rainfalls. 4) It is found that there is a significant relationship between differences in the method of rotation irrigation and the number of ears per hill. The plot irrigated at an interval of 7 days shows 17.4 ears and plot irrigated at an interval of 6 days, 16.3 5) In vinyl-treated plots, it is shown that both yield and component elements are greatest in the case of the plot ith whole of $3cm/m^2$ Next in order are the plot with a hole of $2cm/m^2$ the plot with a hole of $1cm/m^2$ In the case of the plot with no hole it is found that both yield and component elements are decreased as compared to the control plot. 6) The irrigation water reqirement is measured for the actual irrigation days of 72 which are the number subtracted the days of rainfall of 30 from the total irrigation days of 102. It is found that the irrigation water requirement for the uncontrol plot is 1,590mm as compared to 876mm(44.9% saved) for the 9cm-lined plot, 959mm(39.7% saved) for the 6cm-lined plot 1,010mm(36% saved) for the 3cm-lined plot and 1,082mm(32% saved) for the wheat straw lined plot. In the case of the Rotation irrigation method it is found that the water requirement for the plot irrigated at an interval of 8 days is 538mm(65% saved), as compared to 617mm(61.6% saved) for plot irrigated at an interval of 7 day 672mm(57.7% saved) for plot irrigated at an interval of 6day, 746mm(53.0% saved) for the plot irrigated at an interval of 5 days, 890mm 44.0% saved) for the plot irrigated at an interval of 4 days, and 975mm(38.6% saved) for the plot irrigated at an interval of 3 days. 7) The rate of evapotranspiration is found 2.8 around the end of month of July, as compared to 2.6 at the begining of August 3.4 around the end of August and 2.6 at the begining of August 3.4 around the end of August and 2.6 at the begining of September. 8) It is found that the saturation quantity of 30mm per day is decreased to 20mm per day though the use of vinyl covering. 9) The husking rate shows 75 per cent which is considered better.

  • PDF

Modeling of Estimating Soil Moisture, Evapotranspiration and Yield of Chinese Cabbages from Meteorological Data at Different Growth Stages (기상자료(氣象資料)에 의(依)한 배추 생육시기별(生育時期別) 토양수분(土壤水分), 증발산량(蒸發散量) 및 수량(收量)의 추정모형(推定模型))

  • Im, Jeong-Nam;Yoo, Soon-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.4
    • /
    • pp.386-408
    • /
    • 1988
  • A study was conducted to develop a model for estimating evapotranspiration and yield of Chinese cabbages from meteorological factors from 1981 to 1986 in Suweon, Korea. Lysimeters with water table maintained at 50cm depth were used to measure the potential evapotranspiration and the maximum evapotranspiration in situ. The actual evapotranspiration and the yield were measured in the field plots irrigated with different soil moisture regimes of -0.2, -0.5, and -1.0 bars, respectively. The soil water content throughout the profile was monitored by a neutron moisture depth gauge and the soil water potentials were measured using gypsum block and tensiometer. The fresh weight of Chinese cabbages at harvest was measured as yield. The data collected in situ were analyzed to obtain parameters related to modeling. The results were summarized as followings: 1. The 5-year mean of potential evapotranspiration (PET) gradually increased from 2.38 mm/day in early April to 3.98 mm/day in mid-June, and thereafter, decreased to 1.06 mm/day in mid-November. The estimated PET by Penman, Radiation or Blanney-Criddle methods were overestimated in comparison with the measured PET, while those by Pan-evaporation method were underestimated. The correlation between the estimated and the measured PET, however, showed high significance except for July and August by Blanney-Criddle method, which implied that the coefficients should be adjusted to the Korean conditions. 2. The meteorological factors which showed hgih correlation with the measured PET were temperature, vapour pressure deficit, sunshine hours, solar radiation and pan-evaporation. Several multiple regression equations using meteorological factors were formulated to estimate PET. The equation with pan-evaporation (Eo) was the simplest but highly accurate. PET = 0.712 + 0.705Eo 3. The crop coefficient of Chinese cabbages (Kc), the ratio of the maximum evapotranspiration (ETm) to PET, ranged from 0.5 to 0.7 at early growth stage and from 0.9 to 1.2 at mid and late growth stages. The regression equation with respect to the growth progress degree (G), ranging from 0.0 at transplanting day to 1.0 at the harvesting day, were: $$Kc=0.598+0.959G-0.501G^2$$ for spring cabbages $$Kc=0.402+1.887G-1.432G^2$$ for autumn cabbages 4. The soil factor (Kf), the ratio of the actual evapotranspiration to the maximum evapotranspiration, showed 1.0 when the available soil water fraction (f) was higher than a threshold value (fp) and decreased linearly with decreasing f below fp. The relationships were: Kf=1.0 for $$f{\geq}fp$$ Kf=a+bf for f$$I{\leq}Esm$$ Es = Esm for I > Esm 6. The model for estimating actual evapotranspiration (ETa) was based on the water balance neglecting capillary rise as: ETa=PET. Kc. Kf+Es 7. The model for estimating relative yield (Y/Ym) was selected among the regression equations with the measured ETa as: Y/Ym=a+bln(ETa) The coefficients and b were 0.07 and 0.73 for spring Chinese cabbages and 0.37 and 0.66 for autumn Chinese cabbages, respectively. 8. The estimated ETa and Y/Ym were compared with the measured values to verify the model established above. The estimated ETa showed disparities within 0.29mm/day for spring Chinese cabbages and 0.19mm/day for autumn Chinese cabbages. The average deviation of the estimated relative yield were 0.14 and 0.09, respectively. 9. The deviations between the estimated values by the model and the actual values obtained from three cropping field experiments after the completion of the model calibration were within reasonable confidence range. Therefore, this model was validated to be used in practical purpose.

  • PDF

Cultural Practices for Reducing Cold Wind Damage of Rice Plant in Eastern Coastal Area of Korea (동해안지대 도작의 냉조풍피해와 피해경감대책)

  • 이승필;김칠용
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.5
    • /
    • pp.407-428
    • /
    • 1991
  • The eastern coastal area having variability of climate is located within Taebaek mountain range and the east coast of Korea. It is therefore ease to cause the wind damages in paddy field during rice growing season. The wind damages to rice plant in this area were mainly caused by the Fohn wind (dry and hot wind) blowing over the Taebaek mountain range and the cold humid wind from the coast. The dry wind cause such as the white head, broken leaves, cut-leaves, dried leaves, shattering of grain, glume discolouration and lodging, On the other hand the cold humid wind derived from Ootsuku air mass in summer cause such symptom as the poor rice growth, degeneration of rachis brenches and poor ripening. To minimize the wind damages and utilize as a preparatory data for wind injury of rice in future, several experiments such as the selection of wind resistant variety to wind damage, determination of optimum transplanting date, improvement of fertilizer application methods, improvement of soils and effect of wind break net were carried out for 8 years from 1982 to 1989 in the eastern coastal area. The results obtained are summarized as follows. 1. According to available statisical data from Korean meteorological services (1954-1989) it is apperent that cold humid winds frequently cause damage to rice fields from August 10th to September 10th, it is therefore advisable to plan rice cultivation in such a way that the heading date should not be later than August 10th. 2. During the rice production season, two winds cause severe damage to the rice fields in eastern coastal area of Korea. One is the Fohn winds blowing over the Taebaek mountain range and the other is the cold humid wind form the coast. The frequency of occurrence of each wind was 25%. 3. To avoid damage caused by typhoon winds three different varieties of rice were planted at various areas. 4. In the eastern coastal area of Korea, the optimum ripening temperature for rice was about 22.2$^{\circ}C$ and the optimum heading date wad August 10th. The optimum transplanting time for the earily maturity variety was June 10th., medium maturity variety was May 20th and that of late maturity was May 10th by means of growing days degree (GDD) from transplanting date to heading date. 5.38% of this coastal area is sandy loamy soil while 28% is high humus soil. These soil types are very poor for rice cultivation. In this coastal area, the water table is high, the drainage is poor and the water temperature is low. The low water temperature makes it difficult for urea to dissolve, as a result rice growth was delayed, and the rice plant became sterile. But over application of urea resulted in blast disease in rice plants. It is therefore advise that Ammonium sulphate is used in this area instead of urea. 6. The low temperature of the soil inhibits activities of microorganism for phosphorus utilization so the rice plant could not easily absorb the phosphorus in the soil. Therefore phosphorus should be applied in splits from transplanting to panicle initiation rather than based application. 7. Wind damage was severe in the sandy loamy soil as compared to clay soils. With the application of silicate. compost and soil from mointain area. the sand loamy soil was improved for rice grain colour and ripening. 8. The use of wind break nets created a mocro-climate such as increased air. soil and water temperature as well as the reduction of wind velocity by 30%. This hastened rice growth, reduced white head and glume discolouration. improved rice quality and increased yield. 9. Two meter high wind break net was used around the rice experimental fields and the top of it. The material was polyethylene sheets. The optimum spacing was 0.5Cm x 0.5Cm. and that of setting up the wind break net was before panicle initiation. With this set up, the field was avoided off th cold humid wind and the Fohn. The yield in the treatment was 20% higher than the control. 10. After typhoon, paddy field was irrigated deeply and water was sprayed to reduce white head, glume discolouration, so rice yield was increased because of increasing ripening ratio and 1, 000 grain weight.

  • PDF

DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA (한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발)

  • 박만배
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.02a
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF