• 제목/요약/키워드: Weight reduction design

검색결과 692건 처리시간 0.028초

다구찌법을 이용한 소음저감용 ER 패널의 파라미터 설계 (Parameter Design of an ER Panel for Noise Reduction using Taguchi Method)

  • 윤영민;김재환;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.638-642
    • /
    • 2003
  • This paper presents a parameter design of an Electrorheological(ER) panel for noise reduction using Taguchi method. Taguchi method is a robust design method that determines control parameters in the presence of noise effect. Host structure thickness, spacer thickness, base oil viscosity and the weight ratio of ER particles are chosen for the control factors. A test setup in an SAE J1400 facility is used to analyze the sound transmission loss. The sensitivity of each factor with signal-to-noise(S/N) ratio and analysis of variance are investigated. The analysis results show that the weight ratio of ER particle and base oil viscosity of the ER fluid mostly affects the noise reduction in the presence of electric field. Based on the Taguchi method, an optimal configuration was designed and comparison is made with experimental result fer the verification.

  • PDF

위상최적화 기법을 이용한 사출 금형 최적 설계 (A Study on Injection Mold Design Using Topology Optimization)

  • 김미진;최재혁;백경윤
    • 한국기계가공학회지
    • /
    • 제21권4호
    • /
    • pp.100-106
    • /
    • 2022
  • Topology optimization is applied for the optimal design of various products to ensure weight reduction and productivity improvement. Reducing the weight of the mold while maintaining its rigidity can ensure shortening of the production cycle, stabilization of the mold temperature, and reduction of mold material costs. In this study, a topology optimization technique was applied to the optimal design of the injection mold, and a topology-optimized model of the mold was obtained. First, the injection mold for the square specimens was modeled. Subsequently, a structural analysis was performed by implementing a load condition generated during the injection molding process. Topology optimization was performed based on the structural analysis results, and the models of the initial and topology-optimized designs were manufactured at 1/4 magnification using a 3D printer. Consequently, compared with the existing model, the weight of the topology-optimized model decreased by 9.8%, and the manufacturing time decreased by 7.61%.

Weight reduction and strengthening of marine hatch covers by using composite materials

  • Tawfik, Basem E.;Leheta, Heba;Elhewy, Ahmed;Elsayed, Tarek
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권2호
    • /
    • pp.185-198
    • /
    • 2017
  • The application of composites as an alternative material for marine steel hatch covers is the subject of this study. Two separate approaches are considered; weight reduction approach and strengthening approach. For both approaches Finite Element Analysis (FEA) was performed using ANSYS software. Critical design parameters of the composite hatch cover and FEA are discussed in details. Regarding the weight reduction approach; steel hatch covers of a bulk carrier were replaced by composite covers and a weight reduction of 44.32% was achieved leading to many benefits including fuel saving, Deadweight Increment and lower center of gravity of the vessel. For the strengthening approach; the foremost hatch cover was strengthened to withstand 150% of the load required by IACS for safer navigation while no change in weight was made between the steel and composite covers. Results show that both approaches are feasible and advantageous.

철구조물의 설계방법에 대한 비교 연구 (Comparative Study of Design Methods for Manufacturing of Steel Structure)

  • 김동권;최재승;황석환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.357-362
    • /
    • 2000
  • Allowable stress design(ASD) method has been widely used to design steel structures such as boiler and heat recovery steam generator(HRSG) of power plant. However, many researchers are recently intrested in road and resistance factor design(LRFD) method which may take the place of ASD. In this work, the weight calculation of steel structure was compared when ASD and LRFD were applied respectively. For the calculation of weight of steel structure, computer program was developed and applied to obtain beam weight. Using this program and GTSTRUDL, structural design program, weight of steel structure is calculated. As a result of weight calculation, maximum 5.4% of weight reduction is achieved among examples of this study by applying LRFD comparing with the result of ASD, and those results quite dependent on the applied load and member classification.

  • PDF

민감도 분석을 이용한 반도체 검사 장비의 X, Y 스테이지 구조의 경량화 연구 (A Study on the Weight Reduction of X,Y stage of Semiconductor Inspection Equipment using Sensitivity Analysis)

  • 고만수;권순기;김참내
    • 디지털융복합연구
    • /
    • 제17권7호
    • /
    • pp.125-130
    • /
    • 2019
  • 민감도 해석은 어떤 설계 변수의 변화가 전체 시스템에 미치는 영향을 확인하기 위한 방법으로, 계산된 민감도는 구조개선 시 중요한 지표가 된다. 본 연구에서는 유한요소해석을 이용하여 설계 변수에 대한 민감도 도출 및 분석 방법과, 민감도 결과를 활용한 구조개선 방법을 제안하였다. 구조 개선이 필요한 실제 반도체 검사 장비를 이용하여 경량화를 위한 설계 변수를 선정하고 설계 변수에 대한 민감도를 유한요소법과 유한차분법을 활용하여 계산하였으며, 장비가 요구하는 과도응답(Transient Response)은 유지하면서도 무게 감소가 가능한 개선 방안을 제시하였다. 유한요소해석과 유한차분법을 이용한 민감도 분석 결과를 이용한다면 구조물의 설계 개선 시 원하는 응력 또는 변위는 만족하면서도 구조적으로 향상된 설계를 할 수 있고, 이는 반도체 검사 장비뿐만 아니라 다양한 분야에서 활용이 가능하다.

선체구조(船體構造)의 최적설계(最適設計)(제1보)(第1報) -Bracket의 최소중량설계(最小重量設計)- (The Optimum Design of Ship Structures(1st Report) -Minimum Weight Design of Brackets-)

  • 장창두;나승수
    • 대한조선학회지
    • /
    • 제21권4호
    • /
    • pp.29-39
    • /
    • 1984
  • In this paper, the membrane and buckling analysis of beams with various shaped brackets is performed by using the finite element method. From the viewpoint of minimum structural weight, a optimum design method to determine the optimal shapes and scantling of brackets under design load is proposed by investigating the effects of beam depth, bracket length and aspect ratio on the structural weight. Also optimal design data and charts for the brackets to support transverse girders or web frames of actual ships are provided. By the present design method, it is possible to perform optimum design of brackets used in actual ships, which could result in considerable reduction of structural weight or cost, increase of dead weight and service speed of ships.

  • PDF

적층구성이 CFRP 사이드 부재의 충돌안전성에 미치는 영향 (Influence of Stacking Condition on Collision Safety of CFRP Side Member)

  • 황우채;양인영
    • 한국안전학회지
    • /
    • 제29권3호
    • /
    • pp.14-19
    • /
    • 2014
  • The global demand for reduction in the weight of automobiles has led many countries to focus on the development of hybrid, eco-friendly, and electric cars. Reduction in the weight of materials can both increase fuel efficiency and maximize automobile performance. Therefore, the design of automobile should be inclined towards the safety aspects. but at the same time, it also consider reducing the structural weight of an automobile. In this study, CFRP side members with circular and double hat shaped section was manufactured. The impact collapse tests performed with change of the stacking condition, such as variation of interface number and outerlayer angle. The impact collapse load and absorbed energy were quantitatively analyzed according to the changes in section shapes and stacking condition. This analysis was performed to obtain design data that can be applied in the development of optimum lightweight members for automobiles.

포뮬러 형태 자작자동차의 경량화 및 주행 성능 향상을 위한 최적설계에 관한 연구 (Optimum Design of Weight Reduction and Driving Performance enhancement for Formula type Self-design on-road vehicle)

  • 신상원;강신욱;하승현;박진표;김대완;이무연
    • 한국산학기술학회논문지
    • /
    • 제18권10호
    • /
    • pp.725-732
    • /
    • 2017
  • 경량화는 현재 자동차 산업에 있어 가장 중요하게 여겨지는 화두 중 하나이다. 내연기관은 물론 미래형 자동차, 친환경 자동차 개발을 위해 경량화는 자동차 산업에 있어서 결코 빠질 수 없는 소재이다. 친환경 자동차를 개발하는데 있어 연비향상과 주행성능향상은 경량화가 핵심이기 때문이다. 본 연구팀에서도 포뮬러 형태의 자작자동차를 제작하면서 경량화와 최적설계를 통한 주행 성능 향상에 주안점을 두고 연구를 시작하였다. 본 연구는 전년도 제작 차량을 바탕으로 다음의 네 가지 항목으로 나누어 진행하였다. 첫 번째, 엔진의 교체를 통한 엔진룸의 구조설계 및 경량화. 두 번째, 프레임의 최적설계를 통한 부재의 단순화 및 경량화 연구. 세 번째, 프레임의 최적설계에 따른 서스펜션의 구조설계 및 해석. 마지막으로, 업라이트와 허브의 설계 및 경량 부품 사용을 통한 경량화 등이다. 이러한 목표설정을 두고 차량 설계를 진행하였으며 결과적으로 전년도 차량 대비 48 kg을 감량하여 19.5% 만큼의 경량화 하였고 이에 가속도 또한 80 m 기준 6.65 s에서 5.8 s만큼 단축시켰다.

과다 설계변수를 고려한 차량 BIW의 소재배치 최적화 (Material Arrangement Optimization for Automotive BIW considering a Large Number of Design Variables)

  • 박도현;진성완;이갑성;최동훈
    • 한국자동차공학회논문집
    • /
    • 제21권3호
    • /
    • pp.15-23
    • /
    • 2013
  • Weight reduction of a automobile has been steadily tried in automotive industry to improve fuel efficiency, driving performance and the production profits. Since the weight of BIW takes up a large portion of the total weight of the automobile, reducing the weight of BIW greatly contributes to reducing the total weight of the vehicle. To reduce weight, vehicle manufacturers have tried to apply lightweight materials, such as aluminum and high-strength steel, to the components of BIW instead of conventional steel. In this research, material arrangement of an automotive BIW was optimized by formulating a design problem to minimize weight of the BIW while satisfying design requirements about bending and torsional stiffness and perform a metamodel-based design optimization strategy. As a result of the design optimization, weight of the BIW is reduced by 45.7% while satisfying all design requirements.