• Title/Summary/Keyword: Weight and Center of Gravity

Search Result 116, Processing Time 0.02 seconds

Study on Gravitational Torque Estimation and Compensation in Electrically Driven Satellite Antenna System (전기식으로 구동하는 위성안테나 시스템의 중력토크 추정 및 보상에 관한 연구)

  • Kim, Gwang Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.10
    • /
    • pp.789-796
    • /
    • 2016
  • The weight of an antenna system pointing satellite on the mobile platform is restricted by the weight limit of the mobile platform. The maximum power of the actuator driving the antenna system is thus limited because a high power actuator needs a heavier weight. Thus, a drive system is designed to have a low torque requirement by reducing the gravitational torque depending on gravity or acceleration of the mobile platform, including vibration, shock, and accelerated motion. To reduce the gravitational torque, the mathematical model of the gravitational torque is preferentially obtained. However, the method to directly estimate the mathematical model in an antenna system has not previously been reported. In this paper, a method is proposed to estimate the gravitational torque as a mathematical model in the antenna system. Additionally, a method is also proposed to calculate the optimal weight of the balancing weight to compensate for the gravitational torque.

A Study on the Minimum Weight Difference Threshold in a VR Controller with Moment Variation (VR 컨트롤러의 모멘트 변화에 따른 최소 무게 차이 인지에 관한 연구)

  • Baek, Mi-Seon;Kim, Huhn
    • Journal of Korea Game Society
    • /
    • v.20 no.1
    • /
    • pp.13-22
    • /
    • 2020
  • This study is about the VR controller that can provide an enhanced experience in VR by augmenting the sense of weight. In this study, the method of changing the center of gravity of the controller was used as a means of transmitting the sense of weight. The experiment was carried out with a device that could change the center of gravity to find the minimum distance at which people can perceive the difference in weight. The results showed that the weight difference between the two stimuli can be perceived at a distance of about 5 cm regardless of the position of the starting stimulus.

Static Balancing of Laminated Rotor Blade by Lab-view (Lab-view를 이용한 적층 블레이드의 정적 밸런싱)

  • Kim, K.S.;Kong, J.H.;Chun, S.Y.;Hur, K.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.391-394
    • /
    • 2009
  • Asymmetrical and unbalanced features such as rotor blade of helicopter, actuator of hard-disk in personal computer are usually manufactured with composite materials. In this case, mass distributions and center of gravity of the parts are important because of their static balancing. Therefore in the manufacturing processes, it is needed to check out the exact data of weight and gravity center. In this study, it has been studied experimentally the balancing of laminated rotor blade by using multiple-point weighing method and lab-view system.

  • PDF

Development of the Gait Rehabilitation Equipment for Hemiplegic Patients after Stroke (편마비 환자를 위한 보행 재활기구 개발)

  • Nam, T.W.;Cho, J.M.;Kim, S.H.;Lim, J.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.5
    • /
    • pp.245-249
    • /
    • 2006
  • The aim of this study is to design and develop the gait rehabilitation equipment that judge patient's movement of his/her center of gravity using pressure sensors, and to aid hemiplegic patients to balance themselves using an automatic stepper that changes the patient's center of gravity. It is hard to bear the weight on the affected side for hemiplegic patients. The gait rehabilitation equipment detects the footing phase of hemiplegic patient during training and moves the unaffected footing side of the stepper up and moves the affected footing side down simultaneously so that the patient's center of gravity can shift from unaffected side to affected side. The gait rehabilitation system was developed and applied for hemiplegic patients during exercise. Eight hemiplegic patients and one normal adult were studied. The developed gait rehabilitation system could judge not only the normal adult's intention but also the patient's intention to move his/her center of gravity. Even though the most of hemiplegic patients exercised in automatic mode and a few hemiplegic patients exercised in manual mode, the developed gait rehabilitation system can aid the hemiplegic patients to train more easily.

Control of an Omni-directional Electric Board using Driver Weight Shift (운전자 체중 이동을 이용한 전방향 전동 보드의 제어)

  • Choi, Yong Joon;Ryoo, Jung Rae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.4
    • /
    • pp.149-155
    • /
    • 2016
  • This paper presents a control method of a mecanum wheel-based omni-directional electric board using driver weight shift. Instead of a steering device such as a joystick or a remote controller, 3 degree-of-freedom driving command for translational and rotational motion of the omni-directional electric board is generated from position of center of gravity measured from weight distribution. The weight shifting motion is not only a driving command but also an intuitive motion to overcome inertial forces. The overall control structure is presented with experimental results to prove validity of the proposed method.

Depth Control of Underwater Glider Using Reduced Order Observer (축소 차원 관측기를 사용한 수중 글라이더의 깊이 제어)

  • Joo, Moon-Gab;Woo, Him-Chan;Son, Hyeong-Gon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.5
    • /
    • pp.311-318
    • /
    • 2017
  • A reduced order observer is developed for depth control of a hybrid underwater glider which combines the good aspects of a conventional autonomous underwater vehicle and a underwater glider. State variables include the center of gravity of the robot and the weight of the buoyancy bag, which can not be directly measured. By using the mathematical model and available information such as directional velocities, accelerations, and attitudes, we developed a Luenberger's reduced order observer to estimate the center of gravity and the buoyancy weight. By simulations using Matlab/Simulink, the efficiency of the proposed observer is shown, where a LQR controller using full state variables is adopted as a depth controller.

A Development of Unbalanced Box Stacking System with High Stability using the Center of Gravity Measurement (무게중심 측정을 이용한 불평형 상자의 고안정 적재 시스템 개발)

  • Seong-Woo Bae;Dae-Gyu Han;Jae-Ho Ryu;Hyeon-hui Lee;Chae-Hun An
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.1
    • /
    • pp.229-237
    • /
    • 2024
  • The logistics industry is converging with digital technology and growing into various logistics automation systems. However, inspection and loading/unloading, which are mainly performed in logistics work, depend on human resources, and the workforce is shrinking due to the decline in the productive population due to the low birth rate and aging. Although much research is being conducted on the development of automated logistics systems to solve these problems, there is a lack of research and development on load stacking stability, which has the potential to cause significant accidents. In this study, loading boxes with various sizes and positions of the center of gravity were set up, and a method for stacking that with high stability is presented. The size of the loading box is measured using a depth camera. The loading box's weight and center of gravity are measured and estimated by a developed device with four loadcells. The measurement error is measured through various repeated experiments and is corrected using the least squares method. The robot arm performs load stacking by determining the target position so that the centers of gravity of the loading boxes with unbalanced masses with a random sequence are transported in alignment. All processes were automated, and the results were verified by experimentally confirming load stacking stability.

Ranking Decision on Assessment Indicator of Natural Resource Conservation Area Using Fuzzy Theory - Focused on Site Selection for the National Trust - (퍼지이론을 이용한 자연자원 보전지역의 평가지표 순위 결정 - 내셔널 트러스트 후보지 선정을 중심으로 -)

  • You Ju-Han;Jung Sung-Gwan;Park Kyung-Hun;Oh Jeong-Hak
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.33 no.4 s.111
    • /
    • pp.97-107
    • /
    • 2005
  • This study was carried out to construct accurate and scientific system of assessment indicators in selection of National Trust conservation areas, which was new concept of domestic environment movement and offer the raw data of new analytic method by introducing the fuzzy theory and weight for overcoming the uncertainty of ranking decision. To transform the Likert's scale granted to assessment indicators into the type of triangular fuzzy number(a, b, c), there was conversion to each minimum(a), median(b), and maximum(c) in applying membership function, and in using the center of gravity and eigenvalue, there was to decide the ranking. The rankings of converted values applied a mean importance and weight were confirmed that they were generally changed. Therefore, the ranking decision was better to accomplish objective and rational ranking decision by applying weight that was calculated in grouping of indicator than to judge the singular concept and to be useful in assessment of diverse National Trust site. In the future, because AHP, which was general method of calculating weight, was lacked, there was to understand the critical point to fix a pertinent weight, and to carry out the study applying engineering concept like fuzzy integral using $\lambda-measure$.

Case Studies Via Level Classes Of The Convergence Program For Verifying The Center Of Gravity (무게중심 확인 융합 프로그램의 수준별 수업 적용 사례연구)

  • Kim, Su Geum;Ryu, Shi Kyu;Kim, Sun Bae
    • Journal of the Korean School Mathematics Society
    • /
    • v.17 no.4
    • /
    • pp.771-804
    • /
    • 2014
  • The concept of the center of gravity is presently being introduced in elementary school curriculums and is broadly applied to Mathematics, Physics, and the Engineering field in University education which are mostly theoretical classes much separated from actual life in the practical educational field. In 2013, ${\bigcirc}{\bigcirc}$ University of Science and Gifted Education, had developed the multidisciplinary approach program of verifying the center of gravity for gifted students, but this program was reconstructed and applied to ordinary students and the effectiveness was analyzed to lay the foundation and generalize this convergence education. Including experiments for verifying the center of gravity in an object with a hollow interior and the existence of a center of gravity outside an object, I proposed realizing the calculations by considering the weight of the lever, the Principle of the lever being a core factor when finding the center of gravity. We altered the existing 8 step program to a 4 step program for the told 65 students from elementary, Junior and High School students, letting them freely select the class lecture by themselves. The analysis attained from surveys, debates and interviews showed that by precise error analysis, students achieved a higher success experience, showing us the importance of the development of a new convergence program.

  • PDF

Foot Pressure Mat with Visual Notification for Recognizing and Correcting Foot Pressure Imbalance (시각적 알림이 있는 족저압매트 개발을 통한 족저압 불균형 인지와 즉각적인 교정)

  • Hanna Park;Bonhak Koo;Jinhee Park;Jooyong Kim
    • Journal of Fashion Business
    • /
    • v.28 no.1
    • /
    • pp.83-97
    • /
    • 2024
  • A plantar pressure mat with visual notifications was developed to confirm whether individuals can effectively balance themselves and correct imbalances. The sensor-embedded mat was made with a commercial yoga mat, and was tested on seven working women in their 30s to determine plantar pressure distribution when standing and squatting, and if they could recognize and correct imbalances with visual feedback. The study found that visual notifications significantly changed the plantar pressure ratio of the forefoot and hindfoot, as well as the left and right foot plantar pressure ratio. Without notifications, the center of gravity was more concentrated in the rear foot than the forefoot in both standing and squatting positions. Visual notifications showed that the center of gravity, which was largely focused on the rear foot, was distributed to the forefoot, resulting in a more evenly distributed center of gravity throughout the sole. For the change in left and right plantar pressure, the weight that was largely loaded on the left side was distributed to the right foot through the visual notification mat, confirming a more balanced plantar pressure.