• Title/Summary/Keyword: Weight Saving

Search Result 299, Processing Time 0.033 seconds

Physical Properties of Planting Concrete Using Recycled Aggregate (재생골재를 이용한 식재용 콘크리트의 물리적 특성)

  • 이상태;신동안;황정하;김진선;오선교;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.93-96
    • /
    • 2000
  • In this paper, physical properties of planting concrete using Recycled aggregates made with demolished concrete and construction wastes are investigated. According to the test results. It shows that recycled aggregates made with demolished concrete and construction wastes have low physical properties compared with crushed stone. But, recycled aggregates made with construction wastes shows better performance in absorption ratio, unit weight and thermal conductivity than crushed stone. According it is thought that they are available for being applied to planting concrete considering the sides of efficient recycling of construction wastes and saving the manufacturing cost.

  • PDF

Development of Optimal Sizing Software for CAES (CAES를 위한 최적 사이징 소프트웨어 개발)

  • Choi, Kyung-Hyun;Yang, Kyung-Bu;Kim, Dong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1236-1239
    • /
    • 2008
  • Through the optimization design of the pneumatic components it leads the energy efficiency increasement and resources saving. Also it effects on the high speed operation, low speed operation, low weight, and complexity of pneumatic systems. In this paper the development of the software will be described based on Object-Oriented technology, which will provide function for development of pneumatic system without any deep knowledge about pneumatic system.

  • PDF

Study of compression characteristics for hydroformed tubes(II) (Hydroformed 튜브 소재의 압축특성에 관한 연구(II))

  • 박세승;손현성;이영선;이우식;김영석
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.17-20
    • /
    • 2002
  • Recently tube hydroforming technology has been one of the most important technology in automotive industry in the point of saving weight and high quality for collision accidents. In this paper, experimental studies for axial compression tests of hydroformed tubes are performed to investigate the collapse absorption characteristics. The collapse absorption abilities are discussed and compared for as-received, hydroformed, and press formed tubes.

  • PDF

Realization of one chip for opto-couplers in driving circuit of electric valve (전동밸브의 구동회로에서 Opto-Coupler들의 one chip화 구현)

  • 정원채
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.181-184
    • /
    • 2001
  • This paper has been studied driving circuits in electrical valves. Also in this paper, opto-couplers of driving circuit are replaced with digital one chip of Altera company. Designs in order to realization of one chip are carried out with Altera Max Plus II. For compact size and light weight, the realization with one chip is necessary in the electrical valves. This paper has designed and presented the digital schemetic circuits, finally the driving circuits are sucessfully operated with the designed chip and showed the saving of area in the driving circuits of electric valves.

  • PDF

Breeding of ′Yangwonjam′a Both Parent Sex-limited Larval Marking Variety Suitable for Spring and Autumn Rearing Season (춘.추 겸용 양친 한성반문품종 ′양원잠′육성)

  • 강필돈;김계명;손봉희;우순옥;류강선
    • Journal of Sericultural and Entomological Science
    • /
    • v.42 no.1
    • /
    • pp.24-27
    • /
    • 2000
  • A new silkworm variety 'Yangwonjam'for both of spring and autumn rearing season is F$_1$hybrid between Jam 143, a Japanese race bred from H5R1/P8503 and Jam 144, a Chinese race from M8312/8190. This is the first both parent sex-limited larval marking variety in Korea, and which contributes to eggs production of F$_1$hybrid silkworm with saving labor. Jam 143, Japanese parent of the 'Yangwonjam'showed high GCA in pupation percentage and Jam 144, Chinese parent showed high GCA in pupation percentage and single cocoon weight. In the local adaptability test performed at 8 local areas in spring of 1998, Yangwonjam records 1% higher in pupation percentage and 5%, 4% lower in single cocoon weight, cocoon yield from 10,000 3rd molted larvae respectively than the check variety Kumokjam. Also in the resistance test against unfavorable rearing condition performed in spring of 1997, Yangwonjam records 9%, 14% lower in single cocoon weight, cocoon shell weight respectively than the check variety, but showed 1% higher in pupation percentage than check variety.

  • PDF

A Study on Manufacturing Methods of Cocuring Composite Wings of Solar-Powered UAV (복합재 태양광 무인기 날개 일체성형 제작기법 연구)

  • Yang, Yongman;Kwon, Jeongsik;Kim, Jinsung;Lee, Sooyong
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.43-50
    • /
    • 2016
  • In order to suggest the optimal manufacturing technology of composite wings of solar-powered unmanned aerial vehicles, this study compared forming technologies to reduce wing weight for long-endurance flight and to improve the manufacturing process for cost-saving and mass production. It compared the manufacturing time and weight of various composite wing molding technologies, including cocuring, secondary bonding, and manufacturing by balsa. As a result, wing weight was reduced through cocuring methods such as band type composite fiber/tape lamination technology, which enabled prolonged flight duration. In addition, the reduced manufacturing time led to a lower cost, which is a good example of weight lightening for not only small solar-powered UAVs, but also composite aircraft.

Minimum Weight Design of Transverse Frames of Oil Tankers by Generalized Slope Deflection Method (일반화 경사처짐법에 의한 유조선 횡강도 부재의 최소 중량 설계)

  • Chang-Doo Jang;Seung-Soo Na
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.3
    • /
    • pp.103-111
    • /
    • 1996
  • A generalized slope deflection method has already been developed by the authors from the existing one, and applied to the 3-dimensional structural analysis of tankers idealized as frame models to verify the effectiveness of the method from the analysis viewpoint. In this study, a minimum hull weight design program of tankers is developed to verify the effectiveness of the method from the design viewpoint by the combination of generalized slope deflection method and optimization method considering discrete design variables. By this program, it is possible to determine the scantling of each member of actual tankers that give minimum weight under given constraints. Also, a considerable weight saving has been found compared with existing ship.

  • PDF

Design for the multistage sheet metal forming of wheel disks by Design of Experiment (실험계획법을 이용한 휠 디스크의 다단판재성형 공정 설계)

  • 이명균;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.278-282
    • /
    • 2003
  • There is a strong industrial demands for the development of light-vehicle to improve fuel efficiency. It is more effective to reduce weight of the parts directly driven by an automobile engine. So the saving in weight of wheels which is operated by an automobile engine improve fuel efficiency more than other parts. There are many step of sheet metal forming in fabricating automotive wheel, so that it is difficult to design process and tools of multi-stage stamping. Traditionally, design process and tools have depended on the experience of skilled workers and it has done by trial and error methods. However, it needs too much costs and time. Taguchi methods has an advantage of the number of required experiments and reliability compared with trial and error method. In this study, Taguchi methods and response surface methods are applied to design process and tools of automotive wheel. As a result, the principal variables are selected and process conditions are optimized.

  • PDF

Multiobjective size and topolgy optimization of dome structures

  • Tugrul, Talaslioglu
    • Structural Engineering and Mechanics
    • /
    • v.43 no.6
    • /
    • pp.795-821
    • /
    • 2012
  • The size and topology of geometrically nonlinear dome structures are optimized thereby minimizing both its entire weight & joint (node) displacements and maximizing load-carrying capacity. Design constraints are implemented from provisions of American Petroleum Institute specification (API RP2A-LRFD). In accordance with the proposed design constraints, the member responses computed by use of arc-length technique as a nonlinear structural analysis method are checked at each load increment. Thus, a penalization process utilized for inclusion of unfeasible designations to genetic search is correspondingly neglected. In order to solve this complex design optimization problem with multiple objective functions, Non-dominated Sorting Genetic Algorithm II (NSGA II) approach is employed as a multi-objective optimization tool. Furthermore, the flexibility of proposed optimization is enhanced thereby integrating an automatic dome generating tool. Thus, it is possible to generate three distinct sphere-shaped dome configurations with varying topologies. It is demonstrated that the inclusion of brace (diagonal) members into the geometrical configuration of dome structure provides a weight-saving dome designation with higher load-carrying capacity. The proposed optimization approach is recommended for the design optimization of geometrically nonlinear dome structures.