• 제목/요약/키워드: Weight Function Method

검색결과 871건 처리시간 0.024초

퍼지 언어적 평가법과 품질기능전개개념을 이용한 무선호출기의 감성공학적 제품설계 응용사례 (A Case Study of a Customer-Oriented Beeper Design using Fuzzy Linguistic Rating and Quality Function Deployment Concepts)

  • 박민용;최창성
    • 대한인간공학회지
    • /
    • 제17권3호
    • /
    • pp.71-80
    • /
    • 1998
  • This study proposed a method to apply certain fuzzy-related Quality control concepts to design customer-oriented products considering user requirements and information starting with the product development stage. This approach showed how to define the importance level of design elements and how to Quantify complex subjective perception of products using the fuzzy linguistic rating method and quality function deployment concepts. Using this approach, various customer requirements could be interpreted and reflected on the early design phase of a new product. To validate the proposed method, an experiment was conducted for designing the shape of the beeper using 14 subjects and 10 commercial beeper products. Front area, width/length ratio, thickness, curve variance, weight, and display area were selected as design elements of the beeper. The results showed that among design elements, front area and weight are significantly related with the subjective perception of the products. Consequently, this study indicates that customer decision on product selection could be made by quantification of user perception for beeper products.

  • PDF

링압인을 이용한 피로균열의 성장지연효과 (Fatigue Crack Growth Retardation Using Ring Indentation)

  • 임원균;송정훈
    • 한국항공우주학회지
    • /
    • 제31권10호
    • /
    • pp.27-33
    • /
    • 2003
  • 균열주위에 링압인을 부가함으로서 피로균열을 지연하는 수법을 제시하였다. 균열주위의 잔류응력분포는 Bueckner가중함수를 이용한 파괴역학적 수법으로 평가하였다. 본 연구는 균열을 가진 재료에 대한 파단시까지의 피로수명을 향상시키기 위한 단순하면서도 표과적인 수법을 개발하는데 있다. 알루미늄재료에 대한 피로실험결과 본 수법이 피로지연효과를 효율적으로 얻을 수 있는 것으로 나타났다.

CAE를 응용한 차체강성 최적화에 관한 연구 (An Study of Optimization on Vehicle Body Stiffness using CAE Application)

  • 최명진;송명준;장승호
    • 한국자동차공학회논문집
    • /
    • 제9권6호
    • /
    • pp.129-134
    • /
    • 2001
  • One of the most important purposes in the design of machines and structures is to produce the most light products of the lowest price with satisfying function and performance. In this study, a scheme of design optimization for the weight down of vehicle body structure is presented. Design sensitivity of vehicle body structure is investigated and design optimization is performed to get weight down with the allowable stiffness of body in white. Stress, deformation and natural frequencies are the constraint of the optimization.

  • PDF

An Adaptive JPEG Steganographic Method Based on Weight Distribution for Embedding Costs

  • Sun, Yi;Tang, Guangming;Bian, Yuan;Xu, Xiaoyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권5호
    • /
    • pp.2723-2740
    • /
    • 2017
  • Steganographic schemes which are based on minimizing an additive distortion function defined the overall impacts after embedding as the sum of embedding costs for individual image element. However, mutual impacts during embedding are often ignored. In this paper, an adaptive JPEG steganographic method based on weight distribution for embedding costs is proposed. The method takes mutual impacts during embedding in consideration. Firstly, an analysis is made about the factors that affect embedding fluctuations among JPEG coefficients. Then the Distortion Update Strategy (DUS) of updating the distortion costs is proposed, enabling to dynamically update the embedding costs group by group. At last, a kind of adaptive JPEG steganographic algorithm is designed combining with the update strategy and well-known additive distortion function. The experimental result illustrates that the proposed algorithm gains a superior performance in the fight against the current state-of-the-art steganalyzers with high-dimensional features.

준모수적 계층적 선택모형에 대한 베이지안 방법 (A Bayesian Method to Semiparametric Hierarchical Selection Models)

  • 정윤식;장정훈
    • 응용통계연구
    • /
    • 제14권1호
    • /
    • pp.161-175
    • /
    • 2001
  • 메타분석(Meta-analysis)은 서로 독립적으로 연구되어진 결과들을 전체적인 하나의 결과로 도출하기 위해 사용되어지는 통계적 방법이다. 이러한 통계적 방법을 설명할 모형으로는 선택모형(selection model)을 포함한 계층적 모형(hierarchical model)을 사용하며, 이러한 모형들은 베이지안 메타분석에 유용한 것으로 알려져 있다. 그러나, 메타분석의 자료들은 일반적으로 출판편의(publication bias)를 갖고 있으므로 이를 극복하고자 가중함수(weight function)를 이용하여 분포함수를 새롭게 정의하여 사용한다. 최근에 Silliman(1997)은 계층적 모형(hierarchical model)에 가중함수를 첨부한 계층적 선택모형(hierarchical selection model)을 정의하고 모수적 베이지안 방법을 제시하였다. 본 연구에서는 미관측된 연구효과에 디리슈레 과정 사전분포(Dirichlet process prior)를 적용한 준모수적 계층적 선택모형(semiparametric hierarchical selection models)을 소개한다. 여기서 제시된 준모수적 계층적 선택모형을 베이지안 방법으로 추정하기 위하여 마코프 연쇄 몬테칼로(Markov chain Monte Carlo)방법을 이용한다. 제시된 방법을 적용하기 위하여 실제 자료(Johnson, 1993)인 충치를 예방하기 위한 두 가지의 예방약의 효과에 대한 차이를 비교하기 위해 얻어진 12개의 연구를 이용하여 메타분석을 한다.

  • PDF

굴삭기 작업장치 내구 경량 최적화 기법 연구 (Study on the Weight Optimization of Excavator Attachments Considering Durability)

  • 김판영;김현기;박진수;황재봉;송규삼
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.349-353
    • /
    • 2007
  • The main functions of excavator are mainly carried out by excavator attachments such as arm and boom. These components should be designed to be light as well as durable enough because their effects on the whole structure are significant. In this paper, an optimization procedure for lightweight design considering fatigue strength for excavator attachments is presented. The weight of attachments and allowable fatigue stresses at critical areas are used as objective function and constraints, respectively, in which design variables are the thickness of the plates of attachments. The simulated annealing search method is adopted for a global optimization solution. Besides, the response surface method using the artificial neural network is used to simulate constraint function for the sake of practical fast calculation. Some example case of optimization is presented here for a sample excavator. This weight optimization is expected to contribute to a considerable improvement of fuel efficiency of excavator.

  • PDF

강건성을 고려한 공리적 설계의 새로운 정보 지수 (A New Information Index of Axiomatic Design for Robustness)

  • 황광현;박경진
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.2073-2081
    • /
    • 2002
  • In product design and manufacturing, axiomatic design provides a systematic approach for the decision-making process. Two axioms have been defined such as the Independence Axiom and the Information Axiom. The Information Axiom states that the best design among those that satisfy the independence axiom is the one with the least information content. In other words, the best design is the one that has the highest probability of success. On the other hand, the Taguchi robust design is used in the two-step process; one is "reduce variability," and the other is "adjust the mean on the target." The two-step can be interpreted as a problem that has two FRs (functional requirements). Therefore, the Taguchi method should be used based on the satisfaction of the Independence Axiom. Common aspects exist between the Taguchi method and Axiomatic Design in that a robust design is induced. However, different characteristics are found as well. The Taguchi method does not have the design range, and the probability of success may not be enough to express robustness. Our purpose is to find the one that has the highest probability of success and the smallest variation. A new index is proposed to satisfy these conditions. The index is defined by multiplication of the robustness weight function and the probability density function. The robustness weight function has the maximum at the target value and zero at the boundary of the design range. The validity of the index is proved through various examples.gh various examples.

최적구조변경법에 의한 자동차 엔진 블록의 중량최소화에 관한 연구 (A Study on the Weight Minimization of an Automobile Engine Block by Optimum Structural Modification)

  • 길병래
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권4호
    • /
    • pp.560-568
    • /
    • 1998
  • Recently to develop an automobile with better properities many researches and investments have been executed. In this paper we intend to improve the automobile properties by reducing the weight of the engine without changing the dynamic characteristics. At first the vibration analysis by the Substructure Synthesis Mehtod and the exciting test of the engine model performed to confirm the reliability of the analyzing tools. And the weight minimiza-tion is performed by the Sensitivity Analysis and the Optimum Structural Modificationl. To decrease the engine weight ideally the weight of the parts with the low sensitivity is to cut mainly and the changing quantity of the natural frequency by the cut is to be recovered by the weight modification of the parts with the high sensitivity. As actually the mathematical unique solution for the homogeneous problem(i. e. 0 object func-tion problem)does not exist we redesign the engine block with much thinner initial thickness and recover the natural frequencies and natural modes of original structure by the sensitivity analy-sis and then observe the Frequency Response Function(FRF) for the interesting points. In this analysis the original thickness of the engine model is 8mm and the redesigned initial thicknesses are 5mm and 6mm, And the number of the interesting natural frequencies are 1, 2, 3, 4 and 5 respectively.

  • PDF

다중반응표면 최적화를 위한 단변량 손실함수법: 대화식 절차 기반의 가중치 결정 (A Univariate Loss Function Approach to Multiple Response Surface Optimization: An Interactive Procedure-Based Weight Determination)

  • 정인준
    • 지식경영연구
    • /
    • 제21권1호
    • /
    • pp.27-40
    • /
    • 2020
  • Response surface methodology (RSM) empirically studies the relationship between a response variable and input variables in the product or process development phase. The ultimate goal of RSM is to find an optimal condition of the input variables that optimizes (maximizes or minimizes) the response variable. RSM can be seen as a knowledge management tool in terms of creating and utilizing data, information, and knowledge about a product production and service operations. In the field of product or process development, most real-world problems often involve a simultaneous consideration of multiple response variables. This is called a multiple response surface (MRS) problem. Various approaches have been proposed for MRS optimization, which can be classified into loss function approach, priority-based approach, desirability function approach, process capability approach, and probability-based approach. In particular, the loss function approach is divided into univariate and multivariate approaches at large. This paper focuses on the univariate approach. The univariate approach first obtains the mean square error (MSE) for individual response variables. Then, it aggregates the MSE's into a single objective function. It is common to employ the weighted sum or the Tchebycheff metric for aggregation. Finally, it finds an optimal condition of the input variables that minimizes the objective function. When aggregating, the relative weights on the MSE's should be taken into account. However, there are few studies on how to determine the weights systematically. In this study, we propose an interactive procedure to determine the weights through considering a decision maker's preference. The proposed method is illustrated by the 'colloidal gas aphrons' problem, which is a typical MRS problem. We also discuss the extension of the proposed method to the weighted MSE (WMSE).

Prediction of Land Use/Land Cover Change in Forest Area Using a Probability Density Function

  • Park, Jinwoo;Park, Jeongmook;Lee, Jungsoo
    • Journal of Forest and Environmental Science
    • /
    • 제33권4호
    • /
    • pp.305-314
    • /
    • 2017
  • This study aimed to predict changes in forest area using a probability density function, in order to promote effective forest management in the area north of the civilian control line (known as the Minbuk area) in Korea. Time series analysis (2010 and 2016) of forest area using land cover maps and accessibility expressed by distance covariates (distance from buildings, roads, and civilian control line) was applied to a probability density function. In order to estimate the probability density function, mean and variance were calculated using three methods: area weight (AW), area rate weight (ARW), and sample area change rate weight (SRW). Forest area increases in regions with lower accessibility (i.e., greater distance) from buildings and roads, but no relationship with accessibility from the civilian control line was found. Estimation of forest area change using different distance covariates shows that SRW using distance from buildings provides the most accurate estimation, with around 0.98-fold difference from actual forest area change, and performs well in a Chi-Square test. Furthermore, estimation of forest area until 2028 using SRW and distance from buildings most closely replicates patterns of actual forest area changes, suggesting that estimation of future change could be possible using this method. The method allows investigation of the current status of land cover in the Minbuk area, as well as predictions of future changes in forest area that could be utilized in forest management planning and policymaking in the northern area.