• Title/Summary/Keyword: Wedge compensators

Search Result 3, Processing Time 0.023 seconds

A Study on Dose Distribution using Virtual Wedge in Breast Cancer (유방암 환자에서 가상 쐐기모양 보상체의 선량분포 특성에 대한 연구)

  • Yun, Sang-Mo;Kim, Sung-Kyu
    • Progress in Medical Physics
    • /
    • v.18 no.1
    • /
    • pp.7-12
    • /
    • 2007
  • In the radiation therapy for breast cancer patients, wedge shaped compensators are essentially used to achieve appropriate dose distribution because of thickness difference according to breast shapes. Tangential Irradiation technique has usually been applied to radiation therapy for breast cancer patients treated with breast conservative surgery. When a primary beam is incident on wedge shaped compensators from medial direction In tangential irradiation technique, low energy scattered radiation is generated and gives additional dose to the breast surface. As a method to reduced additional dose to breast surface, the use of virtual wedge shaped compensator is possible. Eclipse radiation treatment planning (RTP) systems Installed at our institution have virtual wedge shaped compensator for radiation therapy treatment planning. The dose distributions of 15, 30, 45, 60 degree physical wedges and virtual wedges were measured and compared. Results showed that there was no significant differences In symmetry of $10{\times}10$ field among various wedge angles. When the transmission factor was compared, transmission factor Increased linearly as the wedge angle Increased. These results Indicates that the appilcation of virtual wedge in clinical use is appropriate.

  • PDF

Dosimetric Characteristics of 6 MV Modified Beams by Physical Wedges of a Siemens Linear Accelerator

  • Zabihzadeh, Mansour;Birgani, Mohammad Javad Tahmasebi;Hoseini-Ghahfarokhi, Mojtaba;Arvandi, Sholeh;Hoseini, Seyed Mohammad;Fadaei, Mahbube
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.1685-1689
    • /
    • 2016
  • Physical wedges still can be used as missing tissue compensators or filters to alter the shape of isodose curves in a target volume to reach an optimal radiotherapy plan without creating a hotspot. The aim of this study was to investigate the dosimetric properties of physical wedges filters such as off-axis photon fluence, photon spectrum, output factor and half value layer. The photon beam quality of a 6 MV Primus Siemens modified by 150 and 450 physical wedges was studied with BEAMnrc Monte Carlo (MC) code. The calculated present depth dose and dose profile curves for open and wedged photon beam were in good agreement with the measurements. Increase of wedge angle increased the beam hardening and this effect was more pronounced at the heal region. Using such an accurate MC model to determine of wedge factors and implementation of it as a calculation algorithm in the future treatment planning systems is recommended.

Improved Breast Irradiation Techniques Using Multistatic Fields or Three Dimensional Universal Compensators (Multistatic Field또는 3차원 공용보상체를 사용한 유방의 방사선 조사법의 평가)

  • Han Youngyih;Cho Jae Ho;Park Hee Chul;Chu Sung Sil;Suh Chang-Ok
    • Radiation Oncology Journal
    • /
    • v.20 no.1
    • /
    • pp.24-33
    • /
    • 2002
  • Purpose : In order to improve dose homogeneity and to reduce acute toxicity in tangential whole breast radiotherapy, we evaluated two treatment techniques using multiple static fields or universal compensators. Materials and Methods : 1) Multistatic field technique : Using a three dimensional radiation treatment planning system, Adac Pinnacle 4.0, we accomplished a conventional wedged tangential plan. Examining the isodose distributions, a third field which blocked overdose regions was designed and an opposing field was created by using an automatic function of RTPS. Weighting of the beams was tuned until an ideal dose distribution was obtained. Another pair of beams were added when the dose homogeneity was not satisfactory. 2) Universal compensator technique : The breast shapes and sizes were obtained from the CT images of 20 patients who received whole breast radiation therapy at our institution. The data obtained were averaged and a pair of universal physical compensators were designed for the averaged data. DII (Dose Inhomogeneity Index : percentage volume of PTV outside $95\~105\%$ of the prescribed dose) $D_{max}$ (the maximum point dose in the PTV) and isodose distributions for each technique were compared. Results : The multistatic field technique was found to be superior to the conventional technique, reducing the mean value of DII by $14.6\%$ (p value<0.000) and the $D_{max}$ by $4.7\%$ (p value<0.000). The universal compensator was not significantly superior to the conventional technique since it decreased $D_{max}$ by $0.3\%$ (p value=0.867) and reduced DII by $3.7\%$ (p value=0.260). However, it decreased the value of DII by maximum $18\%$ when patients' breast shapes fitted in with the compensator geometry. Conclusion : The multistatic field technique is effective for improving dose homogeneity for whole breast radiation therapy and is applicable to all patients, whereas the use of universal compensators is effective only in patients whose breast shapes fit inwith the universal compensator geometry, and thus has limited applicability.