• Title/Summary/Keyword: WebLog Mining

Search Result 82, Processing Time 0.022 seconds

A Study of Web Usage Mining for eCRM

  • Hyuncheol Kang;Jung, Byoung-Cheol
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.3
    • /
    • pp.831-840
    • /
    • 2001
  • In this study, We introduce the process of web usage mining, which has lately attracted considerable attention with the fast diffusion of world wide web, and explain the web log data, which Is the main subject of web usage mining. Also, we illustrate some real examples of analysis for web log data and look into practical application of web usage mining for eCRM.

  • PDF

A Framework for Web Log Analysis Using Process Mining Techniques (프로세스 마이닝을 이용한 웹 로그 분석 프레임워크)

  • Ahn, Yunha;Oh, Kyuhyup;Kim, Sang-Kuk;Jung, Jae-Yoon
    • Journal of Information Technology and Architecture
    • /
    • v.11 no.1
    • /
    • pp.25-32
    • /
    • 2014
  • Web mining techniques are often used to discover useful patterns from data log generated by Web servers for the purpose of web usage analysis. Yet traditional Web mining techniques do not reflect sufficiently sequential properties of Web log data. To address such weakness, we introduce a framework for analyzing Web access log data by using process mining techniques. To illustrate the proposed framework, we show the analysis of Web access log in a campus information system based on the framework and discuss the implication of the analysis result.

Fuzzy Web Usage Mining for User Modeling

  • Jang, Jae-Sung;Jun, Sung-Hae;Oh, Kyung-Whan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.204-209
    • /
    • 2002
  • The interest of data mining in artificial intelligence with fuzzy logic has been increased. Data mining is a process of extracting desirable knowledge and interesting pattern ken large data set. Because of expansion of WWW, web data is more and more huge. Besides mining web contents and web structures, another important task for web mining is web usage mining which mines web log data to discover user access pattern. The goal of web usage mining in this paper is to find interesting user pattern in the web with user feedback. It is very important to find user's characteristic fer e-business environment. In Customer Relationship Management, recommending product and sending e-mail to user by extracted users characteristics are needed. Using our method, we extract user profile from the result of web usage mining. In this research, we concentrate on finding association rules and verify validity of them. The proposed procedure can integrate fuzzy set concept and association rule. Fuzzy association rule uses given server log file and performs several preprocessing tasks. Extracted transaction files are used to find rules by fuzzy web usage mining. To verify the validity of user's feedback, the web log data from our laboratory web server.

Analysis of Web Log Using Clementine Data Mining Solution (클레멘타인 데이터마이닝 솔루션을 이용한 웹 로그 분석)

  • Kim, Jae-Kyeong;Lee, Kun-Chang;Chung, Nam-Ho;Kwon, Soon-Jae;Cho, Yoon-Ho
    • Information Systems Review
    • /
    • v.4 no.1
    • /
    • pp.47-67
    • /
    • 2002
  • Since mid 90's, most of firms utilizing web as a communication vehicle with customers are keenly interested in web log file which contains a lot of trails customers left on the web, such as IP address, reference address, cookie file, duration time, etc. Therefore, an appropriate analysis of the web log file leads to understanding customer's behaviors on the web. Its analysis results can be used as an effective marketing information for locating potential target customers. In this study, we introduced a web mining technique using Clementine of SPSS, and analyzed a set of real web log data file on a certain Internet hub site. We also suggested a process of various strategies build-up based on the web mining results.

A Clustering Algorithm Considering Structural Relationships of Web Contents

  • Kang Hyuncheol;Han Sang-Tae;Sun Young-Su
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.1
    • /
    • pp.191-197
    • /
    • 2005
  • Application of data mining techniques to the world wide web, referred to as web mining, has been the focus of several recent researches. With the explosive growth of information sources available on the world wide web, it has become increasingly necessary to track and analyze their usage patterns. In this study, we introduce a process of pre-processing and cluster analysis on web log data and suggest a distance measure considering the structural relationships between web contents. Also, we illustrate some real examples of cluster analysis for web log data and look into practical application of web usage mining for eCRM.

User modeling based on fuzzy category and interest for web usage mining

  • Lee, Si-Hun;Lee, Jee-Hyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.88-93
    • /
    • 2005
  • Web usage mining is a research field for searching potentially useful and valuable information from web log file. Web log file is a simple list of pages that users refer. Therefore, it is not easy to analyze user's current interest field from web log file. This paper presents web usage mining method for finding users' current interest based on fuzzy categories. We consider not only how many times a user visits pages but also when he visits. We describe a user's current interest with a fuzzy interest degree to categories. Based on fuzzy categories and fuzzy interest degrees, we also propose a method to cluster users according to their interests for user modeling. For user clustering, we define a category vector space. Experiments show that our method properly reflects the time factor of users' web visiting as well as the users' visit number.

Web Navigation Mining by Integrating Web Usage Data and Hyperlink Structures (웹 사용 데이타와 하이퍼링크 구조를 통합한 웹 네비게이션 마이닝)

  • Gu Heummo;Choi Joongmin
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.5
    • /
    • pp.416-427
    • /
    • 2005
  • Web navigation mining is a method of discovering Web navigation patterns by analyzing the Web access log data. However, it is admitted that the log data contains noisy information that leads to the incorrect recognition of user navigation path on the Web's hyperlink structure. As a result, previous Web navigation mining systems that exploited solely the log data have not shown good performance in discovering correct Web navigation patterns efficiently, mainly due to the complex pre-processing procedure. To resolve this problem, this paper proposes a technique of amalgamating the Web's hyperlink structure information with the Web access log data to discover navigation patterns correctly and efficiently. Our implemented Web navigation mining system called SPMiner produces a WebTree from the hyperlink structure of a Web site that is used trl eliminate the possible noises in the Web log data caused by the user's abnormal navigational activities. SPMiner remarkably reduces the pre-processing overhead by using the structure of the Web, and as a result, it could analyze the user's search patterns efficiently.

Research on Data Acquisition Strategy and Its Application in Web Usage Mining (웹 사용 마이닝에서의 데이터 수집 전략과 그 응용에 관한 연구)

  • Ran, Cong-Lin;Joung, Suck-Tae
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.231-241
    • /
    • 2019
  • Web Usage Mining (WUM) is one part of Web mining and also the application of data mining technique. Web mining technology is used to identify and analyze user's access patterns by using web server log data generated by web users when users access web site. So first of all, it is important that the data should be acquired in a reasonable way before applying data mining techniques to discover user access patterns from web log. The main task of data acquisition is to efficiently obtain users' detailed click behavior in the process of users' visiting Web site. This paper mainly focuses on data acquisition stage before the first stage of web usage mining data process with activities like data acquisition strategy and field extraction algorithm. Field extraction algorithm performs the process of separating fields from the single line of the log files, and they are also well used in practical application for a large amount of user data.

User Identification and Session completion in Input Data Preprocessing for Web Mining (웹 마이닝을 위한 입력 데이타의 전처리과정에서 사용자구분과 세션보정)

  • 최영환;이상용
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.9
    • /
    • pp.843-849
    • /
    • 2003
  • Web usage mining is the technique of data mining that analyzes web users' usage patterns by large web log. To use the web usage mining technique, we have to classify correctly users and users session in preprocessing, but can't classify them completely by only log files with standard web log format. To classify users and user session there are many problems like local cache, firewall, ISP, user privacy, cookey etc., but there isn't any definite method to solve the problems now. Especially local cache problem is the most difficult problem to classify user session which is used as input in web mining systems. In this paper we propose a heuristic method which solves local cache problem by using only click stream data of server side like referrer log, agent log and access log, classifies user sessions and completes session.

High-Speed Search Mechanism based on B-Tree Index Vector for Huge Web Log Mining and Web Attack Detection (대용량 웹 로그 마이닝 및 공격탐지를 위한 B-트리 인덱스 벡터 기반 고속 검색 기법)

  • Lee, Hyung-Woo;Kim, Tae-Su
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.11
    • /
    • pp.1601-1614
    • /
    • 2008
  • The number of web service users has been increased rapidly as existing services are changed into the web-based internet applications. Therefore, it is necessary for us to use web log pre-processing technique to detect attacks on diverse web service transactions and it is also possible to extract web mining information. However, existing mechanisms did not provide efficient pre-processing procedures for a huge volume of web log data. In this paper, we proposed both a field based parsing and a high-speed log indexing mechanism based on the suggested B-tree Index Vector structure for performance enhancement. In experiments, the proposed mechanism provides an efficient web log pre-processing and search functions with a session classification. Therefore it is useful to enhance web attack detection function.

  • PDF