A MDA-based Approach to Developing UI Architecture for Mobile Telephony Software (MDA기반 이동 단말 시스템 소프트웨어 개발 기법)
-
- The KIPS Transactions:PartD
- /
- v.13D no.3 s.106
- /
- pp.383-390
- /
- 2006
Product-line engineering is a dreaming goal in software engineering research. Unfortunately, the current underlying technologies do not seem to be still not much matured enough to make it viable in the industry. Based on our experiences in working on mobile telephony systems over 3 years, now we are in the course of developing an approach to product-line engineering for mobile telephony system software. In this paper, the experiences are shared together with our research motivation and idea. Consequently, we propose an approach to building and maintaining telephony application logics from the perspective of scenes. As a Domain-Specific Language(DSL), Menu Navigation Viewpoint(MNV) DSL is designed to deal with the problem domain of telephony applications. The functional requirements on how a set of telephony application logics are configured can be so various depending on manufacturer, product concept, service carrier, and so on. However, there is a commonality that all of the currently used telephony application logics can be generally described from the point of user's view, with a set of functional features that can be combinatorially synthesized from typical telephony services(i.e. voice/video telephony, CBS/SMS/MMS, address book, data connection, camera/multimedia, web browsing, etc.), and their possible connectivity. MNV DSL description acts as a backbone software architecture based on which the other types of telephony application logics are placed and aligned to work together globally.
Objective: The purpose of this meta-analysis was to evaluate the effect of dietary essential oils (EOs) on productive performance, nutrient digestibility, and serum metabolite profiles of broiler chickens and to compare their effectiveness as growth-promoting additives against antibiotics. Methods: Peer-reviewed articles were retrieved from Web of Science, Science Direct, PubMed, and Google scholar and selected based on pre-determined criteria. A total of 41 articles containing 55 experiments with 163 treatment units were eligible for analyses. Data were subjected to a meta-analysis based on mixed model methodology considering the doses of EOs as fixed effects and the different studies as random effects. Results: Results showed a linear increase (p<0.001) on body weight gain (BWG) where Antibiotics (FCR) and average daily feed intake decreased (p<0.001) linearly with an increasing dose of EOs. Positive effects were observed on the increased (p<0.01) digestibility of dry matter, crude protein, ether extract, and cecal Lactobacillus while Escherichia coli (E. coli) population in the cecum decreased (p<0.001) linearly. There was a quadratic effect on the weight of gizzard (p<0.01), spleen (p<0.05), bursa of fabricius (p<0.001), and liver (p<0.10) while carcass, abdominal fat, and pancreas increased (p<0.01) linearly. The dose of EOs linearly increased high density lipoprotein, glucose, protein, and globulin concentrations (p<0.01). In comparison to control and antibiotics, all type of EOs significantly reduced (p<0.001) FCR and tended to increase (p<0.1) BWG and final body weight. Cinnamaldehyde-compound was the only EOs type showing a tendency to increase (p<0.1) carcass weight, albumin, and protein of serum metabolites while this EOs together with EOs-Blend 1 decreased (p<0.01) E. coli population. Low density lipoprotein concentration decreased (p<0.05) with antibiotics and carvacrol-based compound when compared to the control group. Conclusion: This evidence confirms that EOs are suitable to be used as growth promoters and their economical benefit appears to be promising.
Nowadays, it is common that most consumers are purchasing goods in e-stores. The e-stores eager to attract, revisit, retain, and finally convert them into loyal customers. The e-store marketers have planned and executed numerous marketing efforts. As one of the marketing activities, e-store managers attempt to build web sites that meet customers' functional and psychological needs. A wide array of studies has been done to identify factors that could affect customers' response of web sites. Majority of studies were conducted to verify technology-related and functional variables of the website which facilitate transactions and enhance customer responses such as purchase intention and website loyalty. However, there has been little research on the external cues of website and psychological variables of consumer that could have positive influences on customer response. The purpose of this study is to investigate the influence of e-store personality on e-store loyalty through mediating variables such as e-store identification, e-store trust, and e-store engagement. The authors of this study develop the model and set up the six main hypotheses and a set of sub-hypotheses based on a literature review, shown in
The notion of information systems (IS) continuance has recently emerged as one of the most important research issues in the field of IS. A great deal of research has been conducted thus far on the basis of theories adapted from various disciplines including consumer behaviors and social psychology, in addition to theories regarding information technology (IT) acceptance. This previous body of knowledge provides a robust research framework that can already account for the determination of IS continuance; however, this research points to other, thus-far-unelucidated determinant factors such as habit, which were not included in traditional IT acceptance frameworks, and also re-emphasizes the importance of emotion-related constructs such as satisfaction in addition to conscious intention with rational beliefs such as usefulness. Experiences should also be considered one of the most important factors determining the characteristics of information system (IS) continuance and the features distinct from those determining IS acceptance, because more experienced users may have more opportunities for IS use, which would allow them more frequent use than would be available to less experienced or non-experienced users. Interestingly, experience has dual features that may contradictorily influence IS use. On one hand, attitudes predicated on direct experience have been shown to predict behavior better than attitudes from indirect experience or without experience; as more information is available, direct experience may render IS use a more salient behavior, and may also make IS use more accessible via memory. Therefore, experience may serve to intensify the relationship between IS use and conscious intention with evaluations, On the other hand, experience may culminate in the formation of habits: greater experience may also imply more frequent performance of the behavior, which may lead to the formation of habits, Hence, like experience, users' activation of an IS may be more dependent on habit-that is, unconscious automatic use without deliberation regarding the IS-and less dependent on conscious intentions, Furthermore, experiences can provide basic information necessary for satisfaction with the use of a specific IS, thus spurring the formation of both conscious intentions and unconscious habits, Whereas IT adoption Is a one-time decision, IS continuance may be a series of users' decisions and evaluations based on satisfaction with IS use. Moreover. habits also cannot be formed without satisfaction, even when a behavior is carried out repeatedly. Thus, experiences also play a critical role in satisfaction, as satisfaction is the consequence of direct experiences of actual behaviors. In particular, emotional experiences such as enjoyment can become as influential on IS use as are utilitarian experiences such as usefulness; this is especially true in light of the modern increase in membership-based hedonic systems - including online games, web-based social network services (SNS), blogs, and portals-all of which attempt to provide users with self-fulfilling value. Therefore, in order to understand more clearly the role of experiences in IS continuance, analysis must be conducted under a research framework that includes intentions, habits, and satisfaction, as experience may not only have duration-based moderating effects on the relationship between both intention and habit and the activation of IS use, but may also have content-based positive effects on satisfaction. This is consistent with the basic assumptions regarding the determining factors in IS continuance as suggested by Oritz de Guinea and Markus: consciousness, emotion, and habit. The principal objective of this study was to explore and assess the effects of experiences in IS continuance, with special consideration given to conscious intentions and unconscious habits, as well as satisfaction. IN service of this goal, along with a review of the relevant literature regarding the effects of experiences and habit on continuous IS use, this study suggested a research model that represents the roles of experience: its moderating role in the relationships of IS continuance with both conscious intention and unconscious habit, and its antecedent role in the development of satisfaction. For the validation of this research model. Korean university student users of 'Cyworld', one of the most influential social network services in South Korea, were surveyed, and the data were analyzed via partial least square (PLS) analysis to assess the implications of this study. In result most hypotheses in our research model were statistically supported with the exception of one. Although one hypothesis was not supported, the study's findings provide us with some important implications. First the role of experience in IS continuance differs from its role in IS acceptance. Second, the use of IS was explained by the dynamic balance between habit and intention. Third, the importance of satisfaction was confirmed from the perspective of IS continuance with experience.
Online game business has emerged as the most lucrative entertainment industry, with over 20 million platers. The popularity of online games can be attributed to the presence of numerous PC Bangs around the country, which have pushed online games into the mainstream culture while broadband internet services facilitated online game play. The age distribution of online game players is expanding and a variety of new games are under development to target certain age groups. While the online game market continues to expand, with many new online game publishers entering the market, relatively little is known about which factors are strategically important for successful development of online games. A conceptual framework is proposed, and a structural equation modeling, for Identifying the factors affecting the market success of online games, is developed. The concept of online game community, idea generation, systematic development strategy, flexible development process, utilizing demo-version, outsourcing, etc, are ail introduced into the model, as the independent variables affecting the success level of online games directly and indirectly. Based on data collected from questionnaire survey, the validity of the model has been tested and interesting conclusions have been developed concerning the relationships between these variables. Statistical results show that utilizing online game community and system atic development strategy is the key for successful online game development. Other interesting results concerning game development strategy are also provided. It is hoped that this result might provide the useful guidelines for developing the successful online game contents. With a better understanding of key success factors, online game developers should be able to make adjustments in their development and marketing plans, providing them with a sustainable advantage over their competition.
In recent years, mobile phone market is saturated in number of user term. Associated service providers struggle to provide various mobile services such as Internet, e-commerce, game, music etc. to increase ARPU (average revenue per user) instead. In this study we explore the factors which affect price tabs of mobile communication. As a conceptual foundation, this study introduces user factors-users' propensity to use mobile phones-as independent variables and mobile service functions as mediating variables. The research model was phones-as independent variables and mobile service functions as mediating variables. The research model was tested with data from Web-based survey of 1,500 mobile users and analyzed by structural equation modeling (SEM). Our results suggest that user factors impact the usage of mobile service functions and mobile service functions for information and convenience are positively related to price tabs of mobile communication. Implications for mobile service providers and policy makers are discussed.
Sentiment analysis, which is one of the text mining techniques, is a method for extracting subjective content embedded in text documents. Recently, the sentiment analysis methods have been widely used in many fields. As good examples, data-driven surveys are based on analyzing the subjectivity of text data posted by users and market researches are conducted by analyzing users' review posts to quantify users' reputation on a target product. The basic method of sentiment analysis is to use sentiment dictionary (or lexicon), a list of sentiment vocabularies with positive, neutral, or negative semantics. In general, the meaning of many sentiment words is likely to be different across domains. For example, a sentiment word, 'sad' indicates negative meaning in many fields but a movie. In order to perform accurate sentiment analysis, we need to build the sentiment dictionary for a given domain. However, such a method of building the sentiment lexicon is time-consuming and various sentiment vocabularies are not included without the use of general-purpose sentiment lexicon. In order to address this problem, several studies have been carried out to construct the sentiment lexicon suitable for a specific domain based on 'OPEN HANGUL' and 'SentiWordNet', which are general-purpose sentiment lexicons. However, OPEN HANGUL is no longer being serviced and SentiWordNet does not work well because of language difference in the process of converting Korean word into English word. There are restrictions on the use of such general-purpose sentiment lexicons as seed data for building the sentiment lexicon for a specific domain. In this article, we construct 'KNU Korean Sentiment Lexicon (KNU-KSL)', a new general-purpose Korean sentiment dictionary that is more advanced than existing general-purpose lexicons. The proposed dictionary, which is a list of domain-independent sentiment words such as 'thank you', 'worthy', and 'impressed', is built to quickly construct the sentiment dictionary for a target domain. Especially, it constructs sentiment vocabularies by analyzing the glosses contained in Standard Korean Language Dictionary (SKLD) by the following procedures: First, we propose a sentiment classification model based on Bidirectional Long Short-Term Memory (Bi-LSTM). Second, the proposed deep learning model automatically classifies each of glosses to either positive or negative meaning. Third, positive words and phrases are extracted from the glosses classified as positive meaning, while negative words and phrases are extracted from the glosses classified as negative meaning. Our experimental results show that the average accuracy of the proposed sentiment classification model is up to 89.45%. In addition, the sentiment dictionary is more extended using various external sources including SentiWordNet, SenticNet, Emotional Verbs, and Sentiment Lexicon 0603. Furthermore, we add sentiment information about frequently used coined words and emoticons that are used mainly on the Web. The KNU-KSL contains a total of 14,843 sentiment vocabularies, each of which is one of 1-grams, 2-grams, phrases, and sentence patterns. Unlike existing sentiment dictionaries, it is composed of words that are not affected by particular domains. The recent trend on sentiment analysis is to use deep learning technique without sentiment dictionaries. The importance of developing sentiment dictionaries is declined gradually. However, one of recent studies shows that the words in the sentiment dictionary can be used as features of deep learning models, resulting in the sentiment analysis performed with higher accuracy (Teng, Z., 2016). This result indicates that the sentiment dictionary is used not only for sentiment analysis but also as features of deep learning models for improving accuracy. The proposed dictionary can be used as a basic data for constructing the sentiment lexicon of a particular domain and as features of deep learning models. It is also useful to automatically and quickly build large training sets for deep learning models.
Data-drive analytics techniques have been recently applied to public surveys. Instead of simply gathering survey results or expert opinions to research the preference for a recently launched product, enterprises need a way to collect and analyze various types of online data and then accurately figure out customer preferences. In the main concept of existing data-based survey methods, the sentiment lexicon for a particular domain is first constructed by domain experts who usually judge the positive, neutral, or negative meanings of the frequently used words from the collected text documents. In order to research the preference for a particular product, the existing approach collects (1) review posts, which are related to the product, from several product review web sites; (2) extracts sentences (or phrases) in the collection after the pre-processing step such as stemming and removal of stop words is performed; (3) classifies the polarity (either positive or negative sense) of each sentence (or phrase) based on the sentiment lexicon; and (4) estimates the positive and negative ratios of the product by dividing the total numbers of the positive and negative sentences (or phrases) by the total number of the sentences (or phrases) in the collection. Furthermore, the existing approach automatically finds important sentences (or phrases) including the positive and negative meaning to/against the product. As a motivated example, given a product like Sonata made by Hyundai Motors, customers often want to see the summary note including what positive points are in the 'car design' aspect as well as what negative points are in thesame aspect. They also want to gain more useful information regarding other aspects such as 'car quality', 'car performance', and 'car service.' Such an information will enable customers to make good choice when they attempt to purchase brand-new vehicles. In addition, automobile makers will be able to figure out the preference and positive/negative points for new models on market. In the near future, the weak points of the models will be improved by the sentiment analysis. For this, the existing approach computes the sentiment score of each sentence (or phrase) and then selects top-k sentences (or phrases) with the highest positive and negative scores. However, the existing approach has several shortcomings and is limited to apply to real applications. The main disadvantages of the existing approach is as follows: (1) The main aspects (e.g., car design, quality, performance, and service) to a product (e.g., Hyundai Sonata) are not considered. Through the sentiment analysis without considering aspects, as a result, the summary note including the positive and negative ratios of the product and top-k sentences (or phrases) with the highest sentiment scores in the entire corpus is just reported to customers and car makers. This approach is not enough and main aspects of the target product need to be considered in the sentiment analysis. (2) In general, since the same word has different meanings across different domains, the sentiment lexicon which is proper to each domain needs to be constructed. The efficient way to construct the sentiment lexicon per domain is required because the sentiment lexicon construction is labor intensive and time consuming. To address the above problems, in this article, we propose a novel product reputation mining algorithm that (1) extracts topics hidden in review documents written by customers; (2) mines main aspects based on the extracted topics; (3) measures the positive and negative ratios of the product using the aspects; and (4) presents the digest in which a few important sentences with the positive and negative meanings are listed in each aspect. Unlike the existing approach, using hidden topics makes experts construct the sentimental lexicon easily and quickly. Furthermore, reinforcing topic semantics, we can improve the accuracy of the product reputation mining algorithms more largely than that of the existing approach. In the experiments, we collected large review documents to the domestic vehicles such as K5, SM5, and Avante; measured the positive and negative ratios of the three cars; showed top-k positive and negative summaries per aspect; and conducted statistical analysis. Our experimental results clearly show the effectiveness of the proposed method, compared with the existing method.
Virtual community(VC) will increasingly be organized as commercial enterprises, with the objective of earning an attractive financial return by providing members with valuable resources and environment. For example, Cyworld.com in Korea uses several community services to enable customers of Cyworld to take control of their own value as potential purchasers of products and services. Although initial adoption is important for online network service success, it does not necessarily result in the desired managerial performance unless the initial usage is continuously related to the continuous usage and purchase. Particularly, the customer who receives relevant online services and is well equipped with online network services, will trust the online service provider and perceive less risk and experience more activities such as continuous usage and purchase. Thus, how to promote continued online service usage or, alternatively, how to prevent discontinuance is a critical issue for VC service providers to consider. By aggregating a wide range of information and online environments for customers and providing trust to its members, the service providers of virtual communities help to reduce the perceived risk of continuous usage and purchase. Drill down, online service managers realize that achieving strong and sustained customers who continuously use online service and purchase on it is crucial. Therefore, the research into this online service continuance will identify the relationship between the initial usage and the continuous usage and purchase. The research of continuous usage or post adoption has recently emerged as an important issue in the IS literature. Individuals' information systems(IS) continuous usage decisions are congruent with consumers' repeat purchase decisions. The TAM(Technology Acceptance Model) paradigm has been strongly confirmed across a wide range from product purchase on EC to online service usage contexts. The analysis of IS usage based on TAM has proven to be successful across almost online service contexts. However, most of previous studies have focused on only an area (i.e., VC or EC). Just little research has tried to analyze the relationship between VC and EC. The effect of some factors on user intention, captured through several theories such as TAM, has been demonstrated. Yet, few studies have explored the salient relationships of VC users' EC acceptance. To fill this gap between VC and EC research, this paper attempts to develop a research model that extends the TAM perspective in view of the additional contributions of trust in the service provider and trust in members on some factors that affect EC and VC adoption. In this extension, we applied the TAM-to-TAM(T2T) model, and analyzed the transfer effect of trust between these two TAMs. The research model was empirically tested on the context of a social network service. The model was to extend TAM with the trust concept for the virtual community environment from the perspective of tasks. By building an extended model of TAM and examining the relationships between trust and the existing variables of TAM, it is aimed to explain a user's continuous intention to use VC and purchase on EC. The unit of analysis in this paper is an individual user of a virtual community. The population of interest is the individual with the experiences in virtual community. The data for this paper was made available via a Web survey of VC users. In total, 281 cases were gathered for about one week, but there were some missing values in the sample and there were some inappropriate cases. Thus, only 248 cases were finally analyzed. We chose the structural equation analysis to test the hypotheses and it is better suited for explaining complex relationships than the other methods. In this test, AMOS was used to test the Structural Equation Model (SEM). Noticeable results have been found in the T2T model regarding the factors affecting the intention to use of virtual community and loyalty. Our result showed that trust transfer plays a key role in forming the two adoption beliefs. Overall, this study preliminarily confirms the salience of trust transfer in online service.
A balanced trophic model for Sinjido marine ecosystem was constructed using ECOPATH model and data obtained 1994 in the region. The model integrates available information on biomass and food spectrum, and analyses ecosystem properties, dynamics of the main species populations and the key trophic pathways of the system, and then compares these results with those of other marine environments. The model comprises 17 groups of benthic algae, phytoplankton, zooplankton, gastropoda, polychaeta, bivalvia, echinodermata, crustacean, cephalopoda, goby, flatfish, rays and skates, croaker, blenny, conger, flatheads, and detritus. The model shows trophic levels of 1.0~4.0 from primary producers and detritus to top predator as flathead group. The model estimates total biomass(B) of 0.1 . First of all, hypothesis 1 is partially supported because sub-hypothesis 1-1 and 1-2 are supported, whereas sub-hypothesis 1-3, 1-4, and 1-5 are rejected. Specifically, it reveals that warmth and sophistication dimensions in e-store personality have positive influence on e-store identification, however, activity, progressiveness, and strictness does not have any significant relationship on e-store identification. Secondly, hypothesis 2 was supported. Therefore, it can be said that e-store identification has a positive impact on e-store trust. Thirdly, hypothesis 3 is also supported. Hence, there is a positive relationship between e-store identification and e-store engagement. Fourthly, hypothesis 4 is supported too. e-store identification has a positive influence on e-store loyalty. Fifthly, hypothesis 5 is also accepted. This indicates that e-store trust is a precedent variable which positively affects e-store loyalty. Lastly, it reveals that e-store engagement has a positive impact on e-store loyalty. Therefore, hypothesis 6 is supported. The findings of the study imply that some dimensions of e-store personality have a positive influence on e-store identification, and that e-store identification has direct and indirect influence on e-store loyalty through e-store trust and e-store engagement positively. These results also suggest that the e-store identification in e-store personality is a precedent variable which positively affects e-store loyalty directly and indirectly through e-store trust and engagement as a mediating variable. Therefore, e-store marketers need to implement website strategy based on e-store personality, e-store identification, e-store trust, and e-store engagement to meet customers' psychological needs and enhance e-store loyalty. Finally, the limitations and future study directions based on this study are discussed.
An Analysis of the Roles of Experience in Information System Continuance
(정보시스템의 지속적 사용에서 경험의 역할에 대한 분석)
An Exploratory Study for Identifying Key Factors in Online Games Development Strategy Utilizing Web Community
(온라인게임 개발전략에 관한 탐색적 연구 : 게임 커뮤니티 활용을 중심으로)
Effects of User Propensity on Total Charges of Mobile Communication: The Role of Mobile Services
(사용자 특성 및 성향이 이동통신 사용요금에 미치는 영향: 이동전화 서비스 기능 중심으로)
KNU Korean Sentiment Lexicon: Bi-LSTM-based Method for Building a Korean Sentiment Lexicon
(Bi-LSTM 기반의 한국어 감성사전 구축 방안)
Latent topics-based product reputation mining
(잠재 토픽 기반의 제품 평판 마이닝)
A Study on EC Acceptance of Virtual Community Users
(가상 공동체 사용자의 전자상거래 수용에 대한 연구)
Analysis of Sinjido Marine Ecosystem in 1994 using a Trophic Flow Model
(영양흐름모형을 이용한 1994년 신지도 해양생태계 해석)
이메일무단수집거부
이용약관
제 1 장 총칙
제 2 장 이용계약의 체결
제 3 장 계약 당사자의 의무
제 4 장 서비스의 이용
제 5 장 계약 해지 및 이용 제한
제 6 장 손해배상 및 기타사항
Detail Search
Image Search
(β)