• Title/Summary/Keyword: Web View

Search Result 530, Processing Time 0.026 seconds

Story-based Information Retrieval (스토리 기반의 정보 검색 연구)

  • You, Eun-Soon;Park, Seung-Bo
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.81-96
    • /
    • 2013
  • Video information retrieval has become a very important issue because of the explosive increase in video data from Web content development. Meanwhile, content-based video analysis using visual features has been the main source for video information retrieval and browsing. Content in video can be represented with content-based analysis techniques, which can extract various features from audio-visual data such as frames, shots, colors, texture, or shape. Moreover, similarity between videos can be measured through content-based analysis. However, a movie that is one of typical types of video data is organized by story as well as audio-visual data. This causes a semantic gap between significant information recognized by people and information resulting from content-based analysis, when content-based video analysis using only audio-visual data of low level is applied to information retrieval of movie. The reason for this semantic gap is that the story line for a movie is high level information, with relationships in the content that changes as the movie progresses. Information retrieval related to the story line of a movie cannot be executed by only content-based analysis techniques. A formal model is needed, which can determine relationships among movie contents, or track meaning changes, in order to accurately retrieve the story information. Recently, story-based video analysis techniques have emerged using a social network concept for story information retrieval. These approaches represent a story by using the relationships between characters in a movie, but these approaches have problems. First, they do not express dynamic changes in relationships between characters according to story development. Second, they miss profound information, such as emotions indicating the identities and psychological states of the characters. Emotion is essential to understanding a character's motivation, conflict, and resolution. Third, they do not take account of events and background that contribute to the story. As a result, this paper reviews the importance and weaknesses of previous video analysis methods ranging from content-based approaches to story analysis based on social network. Also, we suggest necessary elements, such as character, background, and events, based on narrative structures introduced in the literature. We extract characters' emotional words from the script of the movie Pretty Woman by using the hierarchical attribute of WordNet, which is an extensive English thesaurus. WordNet offers relationships between words (e.g., synonyms, hypernyms, hyponyms, antonyms). We present a method to visualize the emotional pattern of a character over time. Second, a character's inner nature must be predetermined in order to model a character arc that can depict the character's growth and development. To this end, we analyze the amount of the character's dialogue in the script and track the character's inner nature using social network concepts, such as in-degree (incoming links) and out-degree (outgoing links). Additionally, we propose a method that can track a character's inner nature by tracing indices such as degree, in-degree, and out-degree of the character network in a movie through its progression. Finally, the spatial background where characters meet and where events take place is an important element in the story. We take advantage of the movie script to extracting significant spatial background and suggest a scene map describing spatial arrangements and distances in the movie. Important places where main characters first meet or where they stay during long periods of time can be extracted through this scene map. In view of the aforementioned three elements (character, event, background), we extract a variety of information related to the story and evaluate the performance of the proposed method. We can track story information extracted over time and detect a change in the character's emotion or inner nature, spatial movement, and conflicts and resolutions in the story.

Experiment of Flexural Behavior of Composite Beam with Steel Fiber Reinforced Ultra High Performance Concrete Deck and Inverted-T Steel Girder (강섬유로 보강된 초고성능 콘크리트 바닥판과 역T형 강거더 합성보의 휨거동 실험)

  • Yoo, Sung-Won;Ahn, Young-Sun;Cha, Yeong-Dal;Joh, Chang-Bin
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.761-769
    • /
    • 2014
  • Ultra high performance concrete (UHPC) has been developed to overcome the low strengths and brittleness of conventional concrete. Considering that UHPC, owing to its composition and the use of steel fibers, develops a compressive strength of 180 MPa as well as high stiffness, the top flange of the steel girder may be superfluous in the composite beam combining a slab made of UHPC and the steel girder. In such composite beam, the steel girder takes the form of an inverted-T shaped structure without top flange in which the studs needed for the composition of the steel girder with the UHPC slab are disposed in the web of the steel girder. This study investigates experimentally and analytically the flexural behavior of this new type of composite beam to propose details like stud spacing and slab thickness for further design recommendations. To that goal, eight composite beams with varying stud spacing and slab thickness were fabricated and tested. The test results indicated that stud spacing running from 100 mm to 2 to 3 times the slab thickness can be recommended. In view of the relative characteristic slip limit of Eurocode-4, the results showed that the composite beam developed ductile behavior. Moreover, except for the members with thin slab and large stud spacing, most of the specimens exhibited results different to those predicted by AASHTO LRFD and Eurocode-4 because of the high performance developed by UHPC.

Improving Performance of Recommendation Systems Using Topic Modeling (사용자 관심 이슈 분석을 통한 추천시스템 성능 향상 방안)

  • Choi, Seongi;Hyun, Yoonjin;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.101-116
    • /
    • 2015
  • Recently, due to the development of smart devices and social media, vast amounts of information with the various forms were accumulated. Particularly, considerable research efforts are being directed towards analyzing unstructured big data to resolve various social problems. Accordingly, focus of data-driven decision-making is being moved from structured data analysis to unstructured one. Also, in the field of recommendation system, which is the typical area of data-driven decision-making, the need of using unstructured data has been steadily increased to improve system performance. Approaches to improve the performance of recommendation systems can be found in two aspects- improving algorithms and acquiring useful data with high quality. Traditionally, most efforts to improve the performance of recommendation system were made by the former approach, while the latter approach has not attracted much attention relatively. In this sense, efforts to utilize unstructured data from variable sources are very timely and necessary. Particularly, as the interests of users are directly connected with their needs, identifying the interests of the user through unstructured big data analysis can be a crew for improving performance of recommendation systems. In this sense, this study proposes the methodology of improving recommendation system by measuring interests of the user. Specially, this study proposes the method to quantify interests of the user by analyzing user's internet usage patterns, and to predict user's repurchase based upon the discovered preferences. There are two important modules in this study. The first module predicts repurchase probability of each category through analyzing users' purchase history. We include the first module to our research scope for comparing the accuracy of traditional purchase-based prediction model to our new model presented in the second module. This procedure extracts purchase history of users. The core part of our methodology is in the second module. This module extracts users' interests by analyzing news articles the users have read. The second module constructs a correspondence matrix between topics and news articles by performing topic modeling on real world news articles. And then, the module analyzes users' news access patterns and then constructs a correspondence matrix between articles and users. After that, by merging the results of the previous processes in the second module, we can obtain a correspondence matrix between users and topics. This matrix describes users' interests in a structured manner. Finally, by using the matrix, the second module builds a model for predicting repurchase probability of each category. In this paper, we also provide experimental results of our performance evaluation. The outline of data used our experiments is as follows. We acquired web transaction data of 5,000 panels from a company that is specialized to analyzing ranks of internet sites. At first we extracted 15,000 URLs of news articles published from July 2012 to June 2013 from the original data and we crawled main contents of the news articles. After that we selected 2,615 users who have read at least one of the extracted news articles. Among the 2,615 users, we discovered that the number of target users who purchase at least one items from our target shopping mall 'G' is 359. In the experiments, we analyzed purchase history and news access records of the 359 internet users. From the performance evaluation, we found that our prediction model using both users' interests and purchase history outperforms a prediction model using only users' purchase history from a view point of misclassification ratio. In detail, our model outperformed the traditional one in appliance, beauty, computer, culture, digital, fashion, and sports categories when artificial neural network based models were used. Similarly, our model outperformed the traditional one in beauty, computer, digital, fashion, food, and furniture categories when decision tree based models were used although the improvement is very small.

Effects of Nonylphenol on the Population Growth of Algae, Heterotrophic Nanoflagellate and Zooplankton (내분비장애물질 Nonylphenol이 미세조류, 종속영양편모충, 동물플랑크톤의 개체군 성장에 미치는 영향)

  • Lee, Ju-Han;Lee, Hae-Ok;Kim, Baik-Ho;Katano, Toshiya;Hwang, Su-Ok;Kim, Dae-Hyun;Han, Myung-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.3
    • /
    • pp.379-386
    • /
    • 2007
  • Nonylphenol (NP) has been well known as a major substance of surfactant and/or estrogenic environmental hormone. We tested toxic effects of nonylphenol on the population growth and development of aquatic organism such as algae (Microcystis aeruginosa), heterotrophic nanoflagellate (Diphylleia rotans), micro- (Brachionus calyciflorus) and macro-zooplankton (Daphnia magna) among eutrophic water food-web constituents. Dosage of NP treatment were 4 to 5 grades, according to each organism's tolerance based on pre-experiments; algae (0.01, 0.05, 0.10, 1.00 mg $L^{-1}$) Diphylleia rotans (0.5, 1,2. 5,6, 10 ${\mu}g\;L^{-1})$, Brachionus calyciflorus (0.1, 0.5, 1, 2.5, 5 ${\mu}g\;L^{-1}$), and Daphnia magna (0.5, 1, 5, 10, 50 ${\mu}g\;L^{-1}$), respectively. Toxic effects were measured by the changes of biomass of each organism after NP treatment. All experiments were triplication. As suggested, the higher concentration of NP treatment, the stronger inhibited the population growth of all organisms tested. In view of toxicity, a variety of concentration of NP showed a significant growth inhibition to organism; algae to 0.05 $mg\;L^{-1}$, D. rotans and B. calyciflorus to 1.0 ${\mu}g\;L^{-1}$, and D. magna to 5.0 ${\mu}g\;L^{-1}$, respectively. The $EC_{50}$ of each organism to the nonylphenol are as follows; 3. calyciflorus (2.49 ${\mu}g\;L^{-1}$), D. rotans (3.49 ${\mu}g\;L^{-1}$), D. magna (7.61 ${\mu}g\;L^{-1})$, and M. aeruginosa (47 ${\mu}g\;L^{-1})$. NP toxic effects on the development of zooplankton like egg production showed some differences in treatment concentration between Brachionus calyciflorus ${0.1{\sim}1NP{\mu}g\;L^{-1})$ and Daphnia magna $(0.5{\sim}5NP\;{\mu}g\;L^{-1})$. These results suggest that a strong growth inhibition of predator or grazer by the nonylphenol can stimulate the algal growth, or can play important role in evoking the nuisance algal bloom in eutrophic water with enough nutrients.

A Study on the Modern Understanding of SimChong-Jeon and its Storytelling Strategy in the Movie (심청전에 대한 현대적 상상력과 스토리텔링 전략 - 영화 <마담 뺑덕>(2014)을 대상으로 -)

  • Shin, Horim
    • (The)Study of the Eastern Classic
    • /
    • no.66
    • /
    • pp.303-330
    • /
    • 2017
  • The purpose of this article is figuring out the modern understanding of SimChong Jeon's narrative and its storytelling strategy in the movie (2014). In the movie, there are three steps which are based on the temporal flow of narrative. shows the web-like structure of desire especially by focusing on the male character Sim Hakkyu. The relationship among characters in is gradually broken because of the desire. Moreover, the desire pushes Sim Chong who is Sim Hakkyu's daughter into the sacrifice. This part seems similar with the narrative of SimChong-Jeon which has been transmitted since 18~19 century in Choson dynasty. However, also tells a different story which describes the progress of Sim Hakkyu's seeking the real relationship filled with love. This difference is able to make people read with the 'stroytelling' point of view. All the lack or problem in is closely related to the desire of Sim Hakkyu. His narrative is something different from the typical story of SimChong-Jeon. A new narrative of Sim Hakkyu is not Sim Chong centered story but rather the anti of it. 'The other narrative' in seems social practice of storytelling in order to break down the preconception of SimChong-jeon called 'cannon'. This is the storytelling strategy of and it suggests the another way of creating new narrative which is based on the classical cannon.

A Comparative Study on Travelers' Online Travel Agency(OTA) selection attributes and revisit selection attributes (여행자의 온라인여행사(OTA) 선택속성과 재방문 시 선택속성에 관한 비교연구)

  • Yang, Chan-Yeol
    • Management & Information Systems Review
    • /
    • v.37 no.4
    • /
    • pp.175-193
    • /
    • 2018
  • As a new type of business model in the market competition situation of tour companies, this study has developed to the online form of the travel industry to the business form which is the combination of the electronic commerce function and the mobile service process in the provision of the simple web-site, This study explores the difficulties of change for the development of the travel industry from the point of view that recognition is not a simple marketing strategy diversification means but a change of recognition as a business model for expanding new markets or creating new markets. The factors affecting the choice of online travel agent (OTA) and the factors that influence the choice of online travel agency were analyzed. Were used for the empirical survey. The purpose of this study is to investigate the factors influencing the choice of online travel agents who have experience with or experience using online travel agency (OTA), what factors are important to them, and how they differ in importance when visiting again. The results of this study are as follows: First, there was a significant difference between the first and second visitors of online travel agencies. The results of this study were as follows: Attitude toward resolving complaints, convenience of change and cancellation, delivery of tickets and documents, convenience of complaints, The emphasis should be on establishing and strengthening service environments such as the speed of updating the latest information, the simplicity of the booking procedure, the degree of satisfaction of the past, the ability of employees to handle their work, the safety of various payment methods and settlement, The results of this study are as follows: First, the satisfaction of the online travel agency is influenced by the selection factors of the selected online tour agency, and the A/S such as the convenience of prompt delivery, Environmental factors contributed to satisfaction. It is suggested that the systematic service structure such as customer satisfaction and ease of use is a necessary marketing strategy for survival and development of online travel agencies. It is suggested that the marketing concentration strategy with the first visitors as the target market is effective and this is a part of the marketing strategy for the survival of online travel agencies.

Clickstream Big Data Mining for Demographics based Digital Marketing (인구통계특성 기반 디지털 마케팅을 위한 클릭스트림 빅데이터 마이닝)

  • Park, Jiae;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.143-163
    • /
    • 2016
  • The demographics of Internet users are the most basic and important sources for target marketing or personalized advertisements on the digital marketing channels which include email, mobile, and social media. However, it gradually has become difficult to collect the demographics of Internet users because their activities are anonymous in many cases. Although the marketing department is able to get the demographics using online or offline surveys, these approaches are very expensive, long processes, and likely to include false statements. Clickstream data is the recording an Internet user leaves behind while visiting websites. As the user clicks anywhere in the webpage, the activity is logged in semi-structured website log files. Such data allows us to see what pages users visited, how long they stayed there, how often they visited, when they usually visited, which site they prefer, what keywords they used to find the site, whether they purchased any, and so forth. For such a reason, some researchers tried to guess the demographics of Internet users by using their clickstream data. They derived various independent variables likely to be correlated to the demographics. The variables include search keyword, frequency and intensity for time, day and month, variety of websites visited, text information for web pages visited, etc. The demographic attributes to predict are also diverse according to the paper, and cover gender, age, job, location, income, education, marital status, presence of children. A variety of data mining methods, such as LSA, SVM, decision tree, neural network, logistic regression, and k-nearest neighbors, were used for prediction model building. However, this research has not yet identified which data mining method is appropriate to predict each demographic variable. Moreover, it is required to review independent variables studied so far and combine them as needed, and evaluate them for building the best prediction model. The objective of this study is to choose clickstream attributes mostly likely to be correlated to the demographics from the results of previous research, and then to identify which data mining method is fitting to predict each demographic attribute. Among the demographic attributes, this paper focus on predicting gender, age, marital status, residence, and job. And from the results of previous research, 64 clickstream attributes are applied to predict the demographic attributes. The overall process of predictive model building is compose of 4 steps. In the first step, we create user profiles which include 64 clickstream attributes and 5 demographic attributes. The second step performs the dimension reduction of clickstream variables to solve the curse of dimensionality and overfitting problem. We utilize three approaches which are based on decision tree, PCA, and cluster analysis. We build alternative predictive models for each demographic variable in the third step. SVM, neural network, and logistic regression are used for modeling. The last step evaluates the alternative models in view of model accuracy and selects the best model. For the experiments, we used clickstream data which represents 5 demographics and 16,962,705 online activities for 5,000 Internet users. IBM SPSS Modeler 17.0 was used for our prediction process, and the 5-fold cross validation was conducted to enhance the reliability of our experiments. As the experimental results, we can verify that there are a specific data mining method well-suited for each demographic variable. For example, age prediction is best performed when using the decision tree based dimension reduction and neural network whereas the prediction of gender and marital status is the most accurate by applying SVM without dimension reduction. We conclude that the online behaviors of the Internet users, captured from the clickstream data analysis, could be well used to predict their demographics, thereby being utilized to the digital marketing.

A Study on the Improvement of Recommendation Accuracy by Using Category Association Rule Mining (카테고리 연관 규칙 마이닝을 활용한 추천 정확도 향상 기법)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.27-42
    • /
    • 2020
  • Traditional companies with offline stores were unable to secure large display space due to the problems of cost. This limitation inevitably allowed limited kinds of products to be displayed on the shelves, which resulted in consumers being deprived of the opportunity to experience various items. Taking advantage of the virtual space called the Internet, online shopping goes beyond the limits of limitations in physical space of offline shopping and is now able to display numerous products on web pages that can satisfy consumers with a variety of needs. Paradoxically, however, this can also cause consumers to experience the difficulty of comparing and evaluating too many alternatives in their purchase decision-making process. As an effort to address this side effect, various kinds of consumer's purchase decision support systems have been studied, such as keyword-based item search service and recommender systems. These systems can reduce search time for items, prevent consumer from leaving while browsing, and contribute to the seller's increased sales. Among those systems, recommender systems based on association rule mining techniques can effectively detect interrelated products from transaction data such as orders. The association between products obtained by statistical analysis provides clues to predicting how interested consumers will be in another product. However, since its algorithm is based on the number of transactions, products not sold enough so far in the early days of launch may not be included in the list of recommendations even though they are highly likely to be sold. Such missing items may not have sufficient opportunities to be exposed to consumers to record sufficient sales, and then fall into a vicious cycle of a vicious cycle of declining sales and omission in the recommendation list. This situation is an inevitable outcome in situations in which recommendations are made based on past transaction histories, rather than on determining potential future sales possibilities. This study started with the idea that reflecting the means by which this potential possibility can be identified indirectly would help to select highly recommended products. In the light of the fact that the attributes of a product affect the consumer's purchasing decisions, this study was conducted to reflect them in the recommender systems. In other words, consumers who visit a product page have shown interest in the attributes of the product and would be also interested in other products with the same attributes. On such assumption, based on these attributes, the recommender system can select recommended products that can show a higher acceptance rate. Given that a category is one of the main attributes of a product, it can be a good indicator of not only direct associations between two items but also potential associations that have yet to be revealed. Based on this idea, the study devised a recommender system that reflects not only associations between products but also categories. Through regression analysis, two kinds of associations were combined to form a model that could predict the hit rate of recommendation. To evaluate the performance of the proposed model, another regression model was also developed based only on associations between products. Comparative experiments were designed to be similar to the environment in which products are actually recommended in online shopping malls. First, the association rules for all possible combinations of antecedent and consequent items were generated from the order data. Then, hit rates for each of the associated rules were predicted from the support and confidence that are calculated by each of the models. The comparative experiments using order data collected from an online shopping mall show that the recommendation accuracy can be improved by further reflecting not only the association between products but also categories in the recommendation of related products. The proposed model showed a 2 to 3 percent improvement in hit rates compared to the existing model. From a practical point of view, it is expected to have a positive effect on improving consumers' purchasing satisfaction and increasing sellers' sales.

SKU recommender system for retail stores that carry identical brands using collaborative filtering and hybrid filtering (협업 필터링 및 하이브리드 필터링을 이용한 동종 브랜드 판매 매장간(間) 취급 SKU 추천 시스템)

  • Joe, Denis Yongmin;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.77-110
    • /
    • 2017
  • Recently, the diversification and individualization of consumption patterns through the web and mobile devices based on the Internet have been rapid. As this happens, the efficient operation of the offline store, which is a traditional distribution channel, has become more important. In order to raise both the sales and profits of stores, stores need to supply and sell the most attractive products to consumers in a timely manner. However, there is a lack of research on which SKUs, out of many products, can increase sales probability and reduce inventory costs. In particular, if a company sells products through multiple in-store stores across multiple locations, it would be helpful to increase sales and profitability of stores if SKUs appealing to customers are recommended. In this study, the recommender system (recommender system such as collaborative filtering and hybrid filtering), which has been used for personalization recommendation, is suggested by SKU recommendation method of a store unit of a distribution company that handles a homogeneous brand through a plurality of sales stores by country and region. We calculated the similarity of each store by using the purchase data of each store's handling items, filtering the collaboration according to the sales history of each store by each SKU, and finally recommending the individual SKU to the store. In addition, the store is classified into four clusters through PCA (Principal Component Analysis) and cluster analysis (Clustering) using the store profile data. The recommendation system is implemented by the hybrid filtering method that applies the collaborative filtering in each cluster and measured the performance of both methods based on actual sales data. Most of the existing recommendation systems have been studied by recommending items such as movies and music to the users. In practice, industrial applications have also become popular. In the meantime, there has been little research on recommending SKUs for each store by applying these recommendation systems, which have been mainly dealt with in the field of personalization services, to the store units of distributors handling similar brands. If the recommendation method of the existing recommendation methodology was 'the individual field', this study expanded the scope of the store beyond the individual domain through a plurality of sales stores by country and region and dealt with the store unit of the distribution company handling the same brand SKU while suggesting a recommendation method. In addition, if the existing recommendation system is limited to online, it is recommended to apply the data mining technique to develop an algorithm suitable for expanding to the store area rather than expanding the utilization range offline and analyzing based on the existing individual. The significance of the results of this study is that the personalization recommendation algorithm is applied to a plurality of sales outlets handling the same brand. A meaningful result is derived and a concrete methodology that can be constructed and used as a system for actual companies is proposed. It is also meaningful that this is the first attempt to expand the research area of the academic field related to the existing recommendation system, which was focused on the personalization domain, to a sales store of a company handling the same brand. From 05 to 03 in 2014, the number of stores' sales volume of the top 100 SKUs are limited to 52 SKUs by collaborative filtering and the hybrid filtering method SKU recommended. We compared the performance of the two recommendation methods by totaling the sales results. The reason for comparing the two recommendation methods is that the recommendation method of this study is defined as the reference model in which offline collaborative filtering is applied to demonstrate higher performance than the existing recommendation method. The results of this model are compared with the Hybrid filtering method, which is a model that reflects the characteristics of the offline store view. The proposed method showed a higher performance than the existing recommendation method. The proposed method was proved by using actual sales data of large Korean apparel companies. In this study, we propose a method to extend the recommendation system of the individual level to the group level and to efficiently approach it. In addition to the theoretical framework, which is of great value.

A Proposal of a Keyword Extraction System for Detecting Social Issues (사회문제 해결형 기술수요 발굴을 위한 키워드 추출 시스템 제안)

  • Jeong, Dami;Kim, Jaeseok;Kim, Gi-Nam;Heo, Jong-Uk;On, Byung-Won;Kang, Mijung
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.1-23
    • /
    • 2013
  • To discover significant social issues such as unemployment, economy crisis, social welfare etc. that are urgent issues to be solved in a modern society, in the existing approach, researchers usually collect opinions from professional experts and scholars through either online or offline surveys. However, such a method does not seem to be effective from time to time. As usual, due to the problem of expense, a large number of survey replies are seldom gathered. In some cases, it is also hard to find out professional persons dealing with specific social issues. Thus, the sample set is often small and may have some bias. Furthermore, regarding a social issue, several experts may make totally different conclusions because each expert has his subjective point of view and different background. In this case, it is considerably hard to figure out what current social issues are and which social issues are really important. To surmount the shortcomings of the current approach, in this paper, we develop a prototype system that semi-automatically detects social issue keywords representing social issues and problems from about 1.3 million news articles issued by about 10 major domestic presses in Korea from June 2009 until July 2012. Our proposed system consists of (1) collecting and extracting texts from the collected news articles, (2) identifying only news articles related to social issues, (3) analyzing the lexical items of Korean sentences, (4) finding a set of topics regarding social keywords over time based on probabilistic topic modeling, (5) matching relevant paragraphs to a given topic, and (6) visualizing social keywords for easy understanding. In particular, we propose a novel matching algorithm relying on generative models. The goal of our proposed matching algorithm is to best match paragraphs to each topic. Technically, using a topic model such as Latent Dirichlet Allocation (LDA), we can obtain a set of topics, each of which has relevant terms and their probability values. In our problem, given a set of text documents (e.g., news articles), LDA shows a set of topic clusters, and then each topic cluster is labeled by human annotators, where each topic label stands for a social keyword. For example, suppose there is a topic (e.g., Topic1 = {(unemployment, 0.4), (layoff, 0.3), (business, 0.3)}) and then a human annotator labels "Unemployment Problem" on Topic1. In this example, it is non-trivial to understand what happened to the unemployment problem in our society. In other words, taking a look at only social keywords, we have no idea of the detailed events occurring in our society. To tackle this matter, we develop the matching algorithm that computes the probability value of a paragraph given a topic, relying on (i) topic terms and (ii) their probability values. For instance, given a set of text documents, we segment each text document to paragraphs. In the meantime, using LDA, we can extract a set of topics from the text documents. Based on our matching process, each paragraph is assigned to a topic, indicating that the paragraph best matches the topic. Finally, each topic has several best matched paragraphs. Furthermore, assuming there are a topic (e.g., Unemployment Problem) and the best matched paragraph (e.g., Up to 300 workers lost their jobs in XXX company at Seoul). In this case, we can grasp the detailed information of the social keyword such as "300 workers", "unemployment", "XXX company", and "Seoul". In addition, our system visualizes social keywords over time. Therefore, through our matching process and keyword visualization, most researchers will be able to detect social issues easily and quickly. Through this prototype system, we have detected various social issues appearing in our society and also showed effectiveness of our proposed methods according to our experimental results. Note that you can also use our proof-of-concept system in http://dslab.snu.ac.kr/demo.html.