• Title/Summary/Keyword: Weathered rock

Search Result 458, Processing Time 0.032 seconds

Simple Evaluation Method of Uplift Resistance for Frictional Shallow Anchors in Rock

  • Kim, Daehong;Lee, Seungho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.1
    • /
    • pp.15-23
    • /
    • 2022
  • This paper presents the results of full-scale load tests performed frictional anchors to various lengths at several sites in Korea. Various rock types were tested, ranging from highly weathered shale to sound gneiss. In many tests, rock failure was reached and the ultimate loads were recorded along with observations of the shape and extent of the failure surface. Laboratory tests were also conducted to investigate the influence of the corrosion protection sheath on the bond strength. Based on test results, the main parameters governing the uplift capacity of the rock anchor system were determined. By evaluation of the ultimate uplift capacity of anchor foundations in a wide range of in situ rock masses, rock classification suitable for structural foundation was developed. Finally, a very simple and economical design procedure is proposed for rock anchor foundations subjected to uplift tensile loads.

Earthquake Engineering Bedrock Based on the Shear Wave Velocities of Rock Strata in Korea (국내 암반지층의 전단파속도에 근거한 지진공학적 기반암 결정)

  • Sun, Chang-Guk
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.273-281
    • /
    • 2014
  • In most current seismic design codes, design earthquake ground motions are defined by a reference spectrum, based on bedrock and site amplification factors that quantify the geotechnical dynamic conditions. Earthquake engineering bedrock is the fundamental geotechnical formation where the seismic waves are attenuated without amplification. To better define bedrock in an earthquake engineering context, shear wave velocity ($V_S$ ) data obtained from in-situ seismic tests were examined for several rock strata in Korea; these data were categorized by borehole drilling investigations. The $V_S$ values for most soft rock data in Korea are > 750 m/s, which is the threshold $V_S$ value for identifying engineering bedrock from a strong motion station. Conversely, VS values are < 750 m/s for 60% of $V_S$ data in weathered rock in Korea. Thus, the soft (or harder) rock strata below the weathered rock layer in Korea can be regarded as earthquake engineering bedrock.

Case Study of Assessment of Slope Stability and Geophysical Survey in Weathered Gneiss (편마암 풍화사면에서의 지구물리탐사 및 안정성 해석 사례연구)

  • Kim, Man-Il;Kim, Jong-Tae;Kim, Jae-Hong;Ro, Byung-Don;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.18 no.3
    • /
    • pp.287-295
    • /
    • 2008
  • Rock slope has a variety of irregular discontinuities and represents a discontinuous mass. Rock joint plays an important role of control hydraulic and mechanic movements in the rock mass. These characteristics between hydraulic and mechanic movements at the rock joints could be represent difference. Therefore they are quiet important factor for slope design. In this study the weathered rock slopes were carried out to analysis of slope stability and geophysical survey. The electrical resistivity survey with dipole-dipole array conducted five profiling sites, and SWEDGE and SLIDE for slope stability analysis were applied on 20 rock slopes far assessment of slope stability and understand to geological situations due to the weathering.

Variation of Rare Earth Element Patterns during Rock Weathering and Ceramic Processes: A Preliminary Study for Application in Soil Chemistry and Archaeology (암석의 풍화과정 및 도자기 제조과정에 따른 희토류원소 분포도의 변화: 토양화학 및 고고학적 응용을 위한 기초연구)

  • Lee, Seung-Gu;Kim, Kun-Han;Kim, Jin-Kwan
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.133-143
    • /
    • 2008
  • On the basis of chemical composition of granite, gneiss and their weathering products, in this paper, rare earth elements (REEs) was estimated as tracer for clarifying a geochemical variance of earth surface material during weathering process. The chemical composition of clay, clay ware and pottery also were measured for testifying usefulness of REE geochemistry in clarifying the source material of pottery. It was observed that there was no systematic variation of chemical composition among source rock, weathered rock and soil during weathering process. The chemical composition of clay, clay ware and pottery also did not show systematic variation by baking pottery. However, PAAS (Post Archean Australian Shale)-normalized REE patterns of rock-weathered rock-soil and clay-clay ware-pottery are similar regardless of weathering process or ceramic art. Our results confirm that REE geochemistry is powerful tool for clarifying the source materials of surface sediment or archaeological ceramic products.

Application of D-ROG technology for restoration of the subsided building (침하건물 복원을 위한 정밀 다점 주입공법의 적용)

  • Lee, Ju-Hyung;Koh, Hyo-Seog;Hong, Jin-Pyo;Park, Jae-Hyun;Cho, Sam-Deok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.405-410
    • /
    • 2009
  • This paper presents a case study that achieved both of serviceability and safety of the building through soil reinforcement and restoration around foundations subjected to serious differential settlement using D-ROG method. The building which has one basement floor and three ground floors is founded on soft ground and differential settlement occurred to the maximum extent of 678mm. The foundation type of the building is a independent mat foundation. Soil profiles consist of landfill layer, alluvial layer, weathered rock, and soft rock. The bearing layer consisting of gravel and weathered rock is located 16.0~17.0m below the bottom of the building. As a result of soil reinforcement and restoration, the recovery ratio of more than 90% can be attained with the maximum set-up of 657mm.

  • PDF

Evaluation on Ground Characteristics of Weathered Granite Masses by Pressuremeter Test (공내재하시험에 의한 화강 풍화암의 지반 특성 평가)

  • Lee, Kwang-Hee;Bae, Kyung-Tae;Chang, Seo-Man;Lee, Chong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.831-838
    • /
    • 2004
  • To study on mechanical characteristics of weathered granite masses are difficult because of undisturbanced sampling and in-situ test. Generally, pressuremeter test is widely used to investigate the behavior of weathered rock masses. However, it has many problems to get a limit pressure because of cavity collapse, membrane damage, ete. This study aims to evaluate the mechanical characteristics of weathered granite masses using in-situ pressuremeter test and numerical analysis depending on the ratio of length and diameter of the membrane(L/D=5, 8, 10, 15, 20). Test results and data are shown that strength parameters are reduced exponentially varing weathering degree, and numerical analysis results are approximately coincided with the test results. And the ratio of length and diameter of the membrane arc not affected the parameters such as modulus of pressuremeter, shear modulus, etc. But limit pressure is increased decreasing membrane length based on numerical analysis. On the other hand, increasing the membrane length, yield pressure is decreased and plastic radius is increased in the case of same weathering degree.

  • PDF

Effect of shear zone on dynamic behaviour of rock tunnel constructed in highly weathered granite

  • Zaid, Mohammad;Sadique, Md. Rehan;Alam, M. Masroor;Samanta, Manojit
    • Geomechanics and Engineering
    • /
    • v.23 no.3
    • /
    • pp.245-259
    • /
    • 2020
  • Tunnels have become an indispensable part of metro cities. Blast resistance design of tunnel has attracted the attention of researchers due to numerous implosion event. Present paper deals with the non-linear finite element analysis of rock tunnel having shear zone subjected to internal blast loading. Abaqus Explicit schemes in finite element has been used for the simulation of internal blast event. Structural discontinuity i.e., shear zone has been assumed passing the tunnel cross-section in the vertical direction and consist of Highly Weathered Granite medium surrounding the tunnel. Mohr-Coulomb constitutive material model has been considered for modelling the Highly Weathered Granite and the shear zone material. Concrete Damage Plasticity (CDP), Johnson-Cook (J-C), Jones-Wilkins-Lee (JWL) equation of state models are used for concrete, steel reinforcement and Trinitrotoluene (TNT) simulation respectively. The Coupled-Eulerian-Lagrangian (CEL) method of modelling for TNT explosive and air inside the tunnel has been adopted in this study. The CEL method incorporates the large deformations for which the traditional finite element analysis cannot be used. Shear zone orientations of 0°, 15°, 30°, 45°, 60°, 75° and 90°, with respect to the tunnel axis are considered to see their effect. It has been concluded that 60° orientation of shear zone presents the most critical situation.

A Case Study of a Foundation Design and Construction of a High-rise Building Applying Bi-directional Pile Load Test(BD PLT) (양방향 말뚝재하시험(BD PLT)을 적용한 초고층 건축구조물의 기초설계 및 시공사례)

  • Kim, Sung-Ho;Lee, Min-Hee;Hwang, Geun-Bae;Choi, Yong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.539-550
    • /
    • 2006
  • New Songdo city is currently developing on the reclaimed land on a marine deposit and among the development the four sixty-four(64) stories high rise buildings are under construction at block 125. The ground condition of the site is comprised of a deep seated weathered rock staratum under a soft marine deposit layer. As a foundation system, a bored pile was planned to transmit the applied load to the stable layer. In this study, the behavior of the weathered rock especially locating at a upper part having a weak strength(HWR, MWR) has been evaluated through series of hi-directional pile load test(BD PLT) carried out on the 3 drilled shafts socketed in a weathered rock layer in a design stage. It has been planned to increase the effect of the tests that the length of test piles was prepared short enough to perform the test under a high stress. The summary of the design reflecting the test results has been made up. In addition, the 4 hi-directional pile tests excuted on the working piles during the construction stage for the purpose of confirmation and the evaluation of the adequacy of the pile behaviors have been included in this study.

  • PDF

Study on the optimal construction of a concrete lining in a weathered rock (풍화암지반에 시공되는 콘크리트라이닝의 적정시공에 관한 연구)

  • Kim, Hyeongkeon;Lee, Chul;Lee, Sun-Woo;Park, Jun-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.1
    • /
    • pp.33-47
    • /
    • 2015
  • Concrete lining in tunnel construction is used as secondary support for downward loads when primary support decays. The use of concrete lining varies greatly depending on the intentions of engineer and/or client. An engineer uses much smaller deformation modulus which determines the concrete lining thickness than of a pattern 3, when supporting patterns 4 and 5 are used in a weathered rock and soil. Considering these conditions, this study intends to suggest optimal construction procedures through a back analysis using a computer program(MIDAS-civil). Cases of Seoul Subway System line${\bigcirc}{\bigcirc}$ zone${\bigcirc}{\bigcirc}$ were selected to be examined for this study. The results show that it is possible to reduce the thickness of concrete lining. When results from this study were applied to Seoul Metropolitan subway construction projects, it is expected to bring economic benefits.

Resistance Factors for Drilled Shafts Embedded in Weathered Rock (풍화암에 근입된 현장타설말뚝의 저항계수 산정)

  • Yoon, Hong-Jun;Jung, Sung-Jun;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.8
    • /
    • pp.107-116
    • /
    • 2007
  • Load and Resistance Factor Design (LRFD) method is being used increasingly in geotechnical design practice worldwide, and is expected to completely replace the current Allowable Stress Design (ASD) method in the near future. LRFD has advantages over ASD in that it allows the design of superstructures and substructures at a consistent reliable level by quantification of failure probability based on reliability analysis. At present, resistance factors for cast-in-place piles embedded in rocks are determined by AASHTO only for the intact rock conditions. In Korea, however, most of the bedrocks in which piles are embedded are heavily weathered. Thus, this study will try to determine the resistance factors of heavily weathered rocks (so-called intermediate goo-materials). To this aim, reliability analysis was carried out to evaluate the resistance factors of cast-in-place piles embedded in intermediate geo-materials in Korea. Pile load test data of 21 cast-in-place piles of 4 construction sites were used for the analysis. Depending on the method which calculates the pile capacities, the resulting resistance factors ranged between 0.1 and 0.6.