• Title/Summary/Keyword: Weathered ground

Search Result 264, Processing Time 0.022 seconds

Analysis on Surface Collapse of the Road NATM Tunnel through the Weathered Rock (풍화대를 통과하는 도로 NATM 터널의 천단부 함몰에 대한 연구)

  • Shin, Eun-Chul;Yoo, Jai-Sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.2
    • /
    • pp.55-64
    • /
    • 2016
  • The construction of the road NATM tunnel, which undergoes the weathered zone of the mountain, was in process with the reinforcement methods such as the rock bolt, shotcrete depositing, and the multi step grout with large diameter steel pipe. The collapse from the ceiling, and on the ground surface area(sink hole), of which were measured to be 25m from the ground surface($V=12m(W){\times}14m(L){\times}5m(H)=840m^3$), as well as excessive displacements in the tunnel, had occurred. In order to execute the necessary reconstruction work, the causes of the surface collapses were inspected through the field investigation, in-situ tests, and numerical analysis. As a result, several proper solutions were suggested for both internal and external reinforcements for the tunnel. As a result of numerical analysis, the collapsed zone of the tunnel was reinforced up to 0.5D~1.0D laterally by the cement grouting on the ground surface, 0.5D longitudinally by the multi step grout with large diameter steel pipe in tunnel. With further reinforcement implemented by rebars in lining, the forward horizontal boring was executed to the rest of the tunnel to evaluate the overall status of the tunnel face. Appropriate reinforcement methods were provided if needed.

Analysis on the Characteristics of the Landslide in Maeri (II) - With a Special Reference on Cause of Landslide - (매리 땅밀림형 산사태(山沙汰)의 발생특성(發生特性)에 관한 분석(分析) (II) - 발생원인(發生原因)을 중심(中心)으로 -)

  • Park, Jae-Hyeon;Choi, Kyung;Bae, Jong Soon;Ma, Ho-Seop;Lee, Jong-Hak
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.4 s.161
    • /
    • pp.243-251
    • /
    • 2005
  • This study was carried out to evaluate precipitation, geological and topographical factors from the landslide area occurred in Maeri, Sangdong-myeon, Gimhaesi, Gyeongsangnam-do. The landslide was affected by geo-topographical factors. Talus which is infiltrated easily by runoff was widely distributed in the landslide area. Concave areas on back- and toe-slope were built up colluvial materials and weathered soils. The colluvial materials were consisted of less weathered pebbles and stones (diameter: 10~100 cm) which are easily infiltrated during rainfall events. Also the landslide was mainly affected by an ascending of ground water table which is low in summit and high in toe-slope due to geo-topographical characteristics of the landslide area. The most important reason of the landslide was a lacking of drainage system of ground water despite the high infiltration rates of ground water in talus area during rainfall events.

Ground Characterization of the Cheongju Granite Area Using the Geophysical Methods (물리탐사를 이용한 청주 화강암 지역의 지반특성 파악)

  • Kim Ji-Soo;Han Soo-Hyung;Seo Yong-Seok;Lee Yong-Jae
    • The Journal of Engineering Geology
    • /
    • v.15 no.1
    • /
    • pp.41-55
    • /
    • 2005
  • This research is aimed at investigating the ground characterization of the Cheongju granite area using the geophysical methods. Test site was chosen from the building site in Chungbuk University, Chongju, Chungbuk province. Furthermore, geophysical methods are employed on the outcrops in the east to map the distribution of fault and intrusion and reveal the degree of weathering. The subsurface structure mapped from seismic re-fraction survey mainly consists of two units of weathered soil and rock. Threshold of the units were determined on the basis of seismic velocity of 800 m/s, supported from the standard classification table. From the results of standard penetrating test(SPT), these units are found to show medium-high and high density, respectively. Weathering soil is subdivided in unsaturated layer and saturated layer with thresholds of seismic velocity (500 m/s) and resistivity (200 ohm-m). In particular, unsaturated layer is again classified into dry and wet portions using the GPR section. The boundary between unsaturated and saturated weathering soils corresponds to the groundwater table at depth of approximately 5~6.2 m, which is well correlated with the one from drill-core data. However, bedrock is not delineated by geophysical methods. In the GPR section, fault and intrusion observed on the outcrop are revealed not to extend to the building site. With respect to weathering degree, the outcrop characterized by low resistivity and velocity corresponds to the grade of 'completely weathered' from the geotechnical investigations.

Engineering Characteristics of the Light Weight Soil Using Phosphogypsum and EPS Beads (인산석고-EPS 조각을 활용한 경량혼합토의 공학적 특성)

  • Kim, Youngsang;Suh, Dongeun;Kim, Wonbong;Lee, Woobum
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.19-25
    • /
    • 2009
  • The current study developed light-weighted mixed soil that can solve problems related with soft soil such as ground subsidence, sliding and lateral displacement of ground. By reducing weight of reclaimed soil through mixing phosphogypsum and recycled EPS beads with the weathered granite soil. A series of geotechnical laboratory tests including physical index test, compaction test, CBR test, and direct shear test were performed and engineering properties were reviewed in order to assess applicability of the light-weighted mixed soil for roads and abutment and various back-filling materials at the reclamation area. Based on the laboratory test results, it was found that the maximum dry unit weight of the light-weighted soil ranges $14.32{\sim}15.79kN/m^3$ and the optimum water content ranges 21.91~24.23%, which means there is 11~19.3% weight decrease effect when comparing with general weathered granite soil. Also it was found that the corrected CBR value ranges 10.4~18.4% satisfying the domestic regulations on road subgrade and back-filling material. In addition, as for shear strength parameter, cohesion ranges 10.79~18.64 kPa and internal frictional angle ranges $35.4{\sim}37.2^{\circ}$, which are similar with those of general construction soil and back-filling material used in Korea. So it can be concluded that light-weighted mixed soil with phosphogypsum can be used effectively for soft reclamation ground as actual filling material and back-filling material. From the current study, it was found that light-weighted mixed soil with phosphogypsum has not only weight reduction effect, but also has no special problems in shear strength and bearing capacity. Therefore, it is expected that phosphogypsum can be recycled in bulk as road subgrade and back-filling material at the reclamation area.

  • PDF

A Study on the Concrete Lining Behavior due to Tunnel Deterioration (터널 열화로 인한 콘크리트 라이닝의 거동에 관한 연구)

  • Han, Young-Chul;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.21-34
    • /
    • 2014
  • This paper studies the time-dependent behaviors of tunnel and surrounding ground due to tunnel deterioration. In the first part, the literature on deterioration characteristics of tunnels was reviewed. In the second part, a numerical analysis was performed to investigate the behavior of concrete lining on the typical section of Korean high-speed rail tunnel (weathered rock) after determination of input variables related to deterioration impact. The result shows that the settlement at the crown of tunnel and surface ground increased up to 7.0% and 30.2% of the total settlements during construction stage, respectively, and the internal convergence reduction of 9.0 mm for concrete linings was generated within 30 years after completion of tunnel construction. Also the loosening height increased up to 2.55 times of tunnel height within 50 years, which is higher than that of Terzaghi's recommendation on ultimate state. Due to this process of extending zones, it is found that additional loads were applied to concrete lining with the axial stress about 3.20~3.66 MPa, which accelerates tunnel deterioration. Finally the quantitative design approach to evaluate time-dependent behavior of lining and surrounding ground due to tunnel deterioration was proposed.

Analysis of Soil Samples Obtained from Piston Sampler and Large Diameter Sampler (피스톤 샘플러와 대구경 샘플러를 이용한 시료 샘플의 공학적 분석)

  • Kim, Young Chin;Kang, Jae Mo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.3
    • /
    • pp.29-34
    • /
    • 2008
  • A large diameter sampler was developed to take undisturbed samples from not only soft ground but also sandy and weathered ground. The large diameter sampler which was developed in Korea Institute of Construction Technology(KICT-type large diameter sampler) was manufactured based on the principle of triple core barrel sampling. A specially designed cutting device was used to cut and contain various kinds of samples in the sampler during a sampling and retrieval procedure. By adjusting the stiffness of the spring located at the top of the sampler, the distance between the cutting shoe and auger can be controlled in accordance with the ground condition. In order to investigate the applicability of the developed sampler and compare the quality of the samples taken by the sampler with that by the traditional thin-walled tube sampler, samples were taken at various sites according to the ground condition. And a series of laboratory tests such as the unconfined compress ion test, triaxial compression test, oedometer test, large diameter Rowe cell consolidation test (D: 150 mm) were performed. The test results showed that the samples by the KICT-type large diameter sampler show higher quality than the samples by the thin-walled tube sampler. And the validity and applicability of the developed KICT-type large diameter sampler was confirmed accordingly.

  • PDF

Estimation on Bearing Capacity of Waste Landfill Reinforced by Geosynthetics Using Numerical Analysis (수치해석에 의한 토목섬유 보강 폐기물 매립지반의 지지력 평가)

  • Shin, Eunchul;Park, Jeongjun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.2
    • /
    • pp.67-74
    • /
    • 2008
  • Many industrialized countries of the world have many problems about the reuse of waste landfill area because of the increase of terminated waste disposal landfill. Especially, the effective use of the terminated waste disposal landfill nearby the urban area has been demanded, because of the lack of the usable land. However, in case of the construction of the building on such a landfill, ground settlement and reduced bearing capacity would be occurred without ground stabilization and proper reinforcement. This study is to evaluate the applicability of geosynthetics for the increment of bearing capacity of solid waste landfill ground. A numerical simulation has been undertaken to model a layer of weathered soil overlaying a layer of geosynthetic reinforcement and waste disposal ground. The proposed analytical model can be used to obtain surface settlement characteristic in the two-dimensional deformation related reinforcement.

  • PDF

Electrical Characteristics against Frequency and Concentration of Contaminated Soils by Mercury and Arsenic (수은과 비소로 오염된 시료의 측정주파수와 농도 변화에 따른 전기적 특성)

  • Son, Young-Hwan;Bong, Tae-Ho;Chang, Pyoung-Wuck
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.6
    • /
    • pp.15-24
    • /
    • 2008
  • In general, ground pollution can be classified with soil pollution and underground water pollution. And ground pollution contaminates the land with garbage dumps and other harmful waste products as heavy metals that can also eventually enter our water supply. This study was conducted to define a characteristics of the electrical resistivity and the permittivity of weathered soil that was contaminated with heavy metals as Mercury and Arsenic. It is not easy whether contamination of soil as subsurface contamination is decided or not and at an early stage especially do that. Therefore the electrical resistivity and the permittivity were used to make up for this defects. These methods are more economical and more effective than the existing methods. And variation of the electrical resistivity and the permittivity values were found against the change of concentration of Mercury and Arsenic aqueous solutions and measuring frequency. These analyzed results indicate that the electrical resistivity and the permittivity tend to decrease against increasing measuring frequency. The electrical resistivity and the permittivity are also found to show the function of frequency.

Performance Test of Large Scale Embankment made with Bottom Ash and Tire Shred (저회-폐타이어 재생혼합토의 실대형 성토구조물 성능 시험)

  • Lee, Sung-Jin;Shin, Min-Ho;Hwang, Seon-Keun;Koh, Tae-Hoon;Lee, Yong-Sik
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1756-1767
    • /
    • 2008
  • Recently, a global trend has been established to facilitate the use of waste materials in geotechnical engineering applications. In Korea, where there is the need to save natural resources as these may become scare in the near future and to prevent excessive ground excavation for natural aggregates. The annual production of scrap tire and bottom ash has sharply increased in recent years. Therefore, it will be good waste resource recycling, if we can utilize the above wastes as fill materials in soft ground. In this study, based on the proven feasibility of bottom ash and tire shred-soil mixtures as lightweight fill materials, tire shred-bottom ash mixtures were suggested as a new lightweight fill material to replace the conventional construction material(soil) with bottom ash. Therefore, the main objective of this research is to investigate the feasibility of tire shred-bottom ash mixtures in order to estimate their suitability for the use of lightweight fill materials. So we carried out the performance tests of 2 large scale embankment which were made with tire shred-bottom ash mixture and the conventional fill material(weathered soil) respectively.

  • PDF

The Control of the Ground Frost Heave by Using the Scrap Tire (폐타이어를 이용한 지반동상 방지)

  • 김영진;강병희
    • Geotechnical Engineering
    • /
    • v.14 no.1
    • /
    • pp.49-58
    • /
    • 1998
  • It was investigated whether the scrap tire can be recycled as a construction material for controlling the frost heave of the ground. Some frost heave tests and a frost penetration depth test in the laboratory were performed on the weathered granite soil mitred with variable amount of scrap tire powder under the atmospheric temperature at -$17^{\circ}$ to find the basic effects of the scrap tire on the control of frost. The frost heave control layer of the crushed stone mixed with scrap tire chips directly below thin subbass in the bituminous pavement was found to be effective for practical use. And the equation for the required thickness of this frost heave control layer with freezing index was suggested.

  • PDF