• Title/Summary/Keyword: Weathered granite layer

Search Result 32, Processing Time 0.028 seconds

Comparison of Infiltration Rate of Slope in Model Test and Finite Element Analysis (모형시험과 유한요소해석에서 비탈면 강우의 침투량 비교)

  • Yu, Yong-Jae;Kim, Jae-Hong
    • Land and Housing Review
    • /
    • v.9 no.2
    • /
    • pp.51-57
    • /
    • 2018
  • The causes of landslides are dependant on rainfall events and the soil characteristics of a slope. For the conventional slope stability, the slope stability analysis has been carried out assuming the saturated soil theory. But, in order to clearly explain a proper soil slope condition by rainfall, the research should be performed using the unsaturated soil mechanism suitable for a soil slope in the field. In the study, by using two major categories of soils in Korea, such as granite and gneiss weathered soils, landslide model test and finite element method have been compared with the difference of seepage and soil stability analysis. The hydraulic conductivity of gneiss weathered soil is slower than that of granite weathered soil, and the gneiss weathered soil contains much finer soils than the granite weathered soil. It was confirmed that the instability of the slope was progressing slowly due to the slow rate of volumetric water content of the surface layer.

Infiltration characteristics and hydraulic conductivity of weathered unsaturated soils

  • Song, Young-Suk;Hong, Seongwon
    • Geomechanics and Engineering
    • /
    • v.22 no.2
    • /
    • pp.153-163
    • /
    • 2020
  • Laboratory experiments were conducted with two different soil conditions to investigate rainfall infiltration characteristics. The soil layer materials that were tested were weathered granite soil and weathered gneiss soil. Artificial rainfall of 80 mm/hr was reproduced through the use of a rainfall device, and the volumetric water content and matric suction were measured. In the case of the granite soil, the saturation velocity and the moving direction of the wetting front were fast and upward, respectively, whereas in the case of the weathered gneiss soil, the velocity and direction were slow and downward, respectively. Rainfall penetrated and saturated from the bottom to the top as the hydraulic conductivity of the granite soil was higher than the infiltration capacity of the artificial rainfall. In contrast, as the hydraulic conductivity of the gneiss soil was lower than the infiltration capacity of the rainfall, ponding occurred on the surface: part of the rainfall first infiltrated, with the remaining rainfall subsequently flowing out. The unsaturated hydraulic conductivity function of weathered soils was determined and analyzed with matric suction and the effective degree of saturation.

Estimation of Thermal Conductivity of Weathered Granite Soils (화강풍화토의 열전도도 산정에 대한 연구)

  • Park, Hyunku;Park, Hansol;Lee, Seung-Rae;Go, Gyu-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2C
    • /
    • pp.69-77
    • /
    • 2012
  • In general, geothermal energy pile and horizontal ground heat exchangers are installed in shallower depths than conventional vertical ground coupled heat pumps. Consequently their heat exchange performance is strongly governed by thermal conductivity of soil layer. Previous studies have shown that the thermal conductivity of soil above ground water table significantly affects the heat exchange rate because of partially saturated condition in soil and consequent variation of soil thermal conductivity. This paper presents a study result on the prediction of thermal conductivity of weathered granite soils. For weathered granite soils sampled from 5 locations, thermal conductivity tests were conducted with varying porosity and degree of saturation. The existing thermal conductivity models in literatures appeared inappropriate to the weathered granite soils. Hence, an empirical equation was proposed in this paper and its validity was examined by applying it to thermal conductivity test results obtained for weathered granite soils in this study and from literatures.

Estimation of Shear Wave Velocity of Weathered Granite Layer Using Nonlinear Multiple Regression Analysis; A Case Study in South Korea (비선형 다중회귀분석을 통한 국내 화강 풍화대 전단파 속도 평가에 대한 사례 연구)

  • Lee, Seung-Hwan;Baek, Sung-Ha;Chung, Choong-Ki;Kwak, Tae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.6
    • /
    • pp.29-37
    • /
    • 2021
  • Since many geotechnical structures are constructed on a weathered granite layer, it is important to evaluate their characteristics. As a seismic design is the more important nowadays, the demands to estimate a shear wave velocity (VS) based on acceptable methods are increasing. In this study, an empirical equation predicting VS of the weathered granite layer is suggested based on the nonlinear multiple variable regression analysis whose independent variables are both SPT (Standard penetration test)-N60 and chemical weathering index. It is concluded that the accuracy of the empirical equation estimating VS of the weathered granite layer increases when it considers the chemical weathering index as an additional independent variable compared to the result of simple regression analysis using only N60.

Heat Exchange Drainage Method Induced Bearing Capacity Characteristic (열유도 배수공법이 적용된 지반의 하중지지 특성)

  • Shin, Seung-min;Sin, Chun-won;Yoo, Chung-Sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.159-164
    • /
    • 2017
  • This paper presents the results of an investigation into the thermo-hydromechanical response of weathered granite soil. The effect of forced change temperature and relative humidity at the soil layer boundaries were monitored during heating. A series of load settlement test were performed on layers of compacted, unsatureated weathered granite soil with geosynthetic embedded at mid height before and after application of heat exchanger to the base of the soil layers. The results from this study indicated the potential for using embedded heat exchangers for the mechanical improvement of geotechnical systems incorporating weathered granite soil.

Investigation on Weathering Degree and Shear Wave Velocity of Decomposed Granite Layer in Hongsung (홍성 지역 화강 풍화 지층의 풍화도 및 전단파 속도에 관한 고찰)

  • Sun, Chang-Guk;Kim, Bo-Hyun;Chung, Choong-Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6C
    • /
    • pp.431-443
    • /
    • 2006
  • As part of a fundamental characterization for subsurface layers in Korea, the weathering degree and shear wave velocity ($V_S$) were evaluated from the X-ray fluorescence analyses and the site investigations containing boring and in-situ seismic tests, respectively, for decomposed granite layer in Hongsung. The subsurface layers at Hongsung were composed of 10 to 40 m thickness of weathered layer in most sites. According to the results of weathering degree analyses in Hongsung, it was examined that three chemical weathering indexes such as MWPI, VR and WIP generally increased with decreasing depth. From the in-situ seismic tests, the $V_S$ was determined as the range between 200 and 500 m/s in weathered layer. Based on the $V_S$ and N value at borehole seismic testing sites, N-$V_S$ correlations were established for weathered layer. Furthermore, the relationships of three representative weathering indexes with the $V_S$ and N value indicated that the MWPI, WIP and 100/VR increased linearly as increasing $V_S$ and exponentially as increasing N value.

Mineralogical Characteristics and Formation Environment of Kaolin Minerals in the Weathering of Granitoids: Weathering of Biotite in Palgongsan Granite (팔공산 화강암내 흑운모의 풍화과정에서 생성되는 고령토광물들의 광물학적 특성 및 생성 환경)

  • 정기영
    • Journal of the Mineralogical Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.97-105
    • /
    • 1998
  • Weathering of biotite in Palgonsan granite was studied by using X-ray diffraction, optical microscopy, scanning electron microscopy, and electron probe micro analysis. Biotite altered to biotite/vermiculite regular mixed layer mineral (B/V) in the early stage of weathering. Although partially replaced by kaolinite with the progress of weathering. B/V is the major weathering product of biotite throughout the profile. During the formation of B/V, Mg, Fe and K are removed from a biotite layer to form a vermiculite layer by about 28%, 44% and 88%, respectively, whereas the Ti content is not changed. Considerable volume increase after the kaolinitization of B/V suggests that Al and Si are largely introduced from the external weathering solution. The silicate lattice templet of a weathering biotite facilitated the nucleation and growth of kaolinite. In the Palgongsan granite weathering profile, plagioclase weathered mostly into halloysite whereas biotite greatly contributes to the kaolinite crystallization though its small content in fresh rock.

  • PDF

A Research for Computation of Bearing Capacity and Settlement of Foundation Considering Scale Effect in Weathered-granite Layer (화강풍화토에서 Scale Effect를 고려한 기초의 지지력 및 침하량 산정에 관한 연구)

  • 박용부;정형식
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.1
    • /
    • pp.131-139
    • /
    • 2004
  • When calculating bearing capacity and settlement of actual foundation from plate test result fur design and construction of shallow foundation, scale effect should be considered. But, adequate guide and test result of scale effect were not prepared yet in Korea. So, to analyze the relations of bearing capacity and settlement as the difference of loading plate sizes, model test and field loading test were performed with different loading plate on weathered-granite layer. Model tests were conducted with water content, compaction number, saturated unit weight and plate size(Dl5, 25cm) in soil-box$(2,000\times 2,000\times 1,000mm)$ formed soil layer. Field loading tests were carried out with diameters of loading plate$(D15, 25, 30, 40, 75\times 75, 140\times 210cm)$ on the same soil condition. Finally, we presented the prediction formula of bearing and settlement for computating scale offset in design of shallow foundation through result analysis of load test and numerical simulation on weathered soil and rock.

Comparative Study on the Runoff Process of Granite Drainage Basins in Korea and Mongolia

  • Yukiya, Tanaka;Yukoinori, Matsukura
    • The Korean Journal of Quaternary Research
    • /
    • v.18 no.2 s.23
    • /
    • pp.67-73
    • /
    • 2004
  • Dissected erosional surfaces are widely distributed in the western part of Korea (e.g. Icheon, Chungju, Jecheon, Seosan). The deposits with thickness of less than 2m occur on the smooth bedrock surface are composed of poorly sorted subangular gravels with less than 20cm diameter. However, only weathered mantle of granites without the gravel layer are observed at some outcrops. The results of grain size analysis of deposits of Icheon district revealed that the characteristic of the gain size distribution is very similar with the results of sheetflood deposits presented by Blair (1999) in the Death Valley. Loess layer with buried soil layers of MIS7 covers the sheetflood deposits. The loess layer implies that the sheetflood deposits occurred before MIS7 based on the typical Loess sequences presented by Naruse et al.(2003). On the other hand, the climate of Korean Peninsula in MIS2 was very dry and cold (Yoon and Hwnag, 2003) by pollen analysis. This is because Yellow Sea was completely emerged during the MIS2(e.g. Sau\ito, 1998). So, it is thought that the climate in Korean Peninsula of not only MIS2 but also other glacial ages such as MIS8 was similar with present Mongolian climates. Tanaka et al.(2005) pointed out that Hortonian overlandflow occurs in grass vegetated granite basin in Mongolia. Therefore, dissected piedmont gentle slopes in the western Korea were possibly formed by sheetflood erosion during probably MIS8 as pediment widely distributed in Mongolia.

  • PDF

A Study on Cementation Reaction Mechanism for Weathered Granite Soil and Microbial Mixtures (화강풍화토와 미생물 혼합물의 고결 반응 메카니즘)

  • Oh, Jongshin;Lee, Sungyeol;Kim, Jinyung;Kwon, Sungjin;Jung, Changsung;Lee, Jaesoo;Lee, Jeonghoon;Ko, Hwabin;Baek, Wonjin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.6
    • /
    • pp.103-110
    • /
    • 2019
  • The purpose of this study is to investigate the reaction mechanism of soil and bacteria solution by various mixing ratios. For this purpose, in order to understand the reaction mechanisms of microorganisms and weathered granite soil, the tests were carried out under various mixing ratios additives such as soil, bacteria solution, $Ca(OH)_2$ and fixture. The test results from this study are summarized as follows. Firstly, the reaction between the bacteria solution and fixture produced a precipitate called vaterite, a type of silicate and calcium carbonate. Secondly, as a result of SEM analysis, the resulting precipitates generated from the test results using the specimens with various mixing ratios except SW condition and the irregular spherical microscopic shapes were formed in the size of $150{\mu}m$ to $20{\mu}m$. In addition, it can be seen that the bacteria solution and the fixture reacted between the granules to form an adsorbent material layer on the surface, and the microorganisms had a biological solidifying effect when the pores are combined into hard particles. Finally, The XRD analysis of the sediment resulting from the reaction between the microorganism and the deposit control agent confirmed the presence of a type of calcium carbonate ($CaCO_3$) vaterite, which affects soil strength formation, as well as silicate($SiO_2$).