• Title/Summary/Keyword: Weather Prediction

Search Result 881, Processing Time 0.028 seconds

Estimation of High-resolution Sea Wind in Coastal Areas Using Sentinel-1 SAR Images with Artificial Intelligence Technique (Sentinel-1 SAR 영상과 인공지능 기법을 이용한 연안해역의 고해상도 해상풍 산출)

  • Joh, Sung-uk;Ahn, Jihye;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1187-1198
    • /
    • 2021
  • Sea wind isrecently drawing attraction as one of the sources of renewable energy. Thisstudy describes a new method to produce a 10 m resolution sea wind field using Sentinel-1 images and low-resolution NWP (Numerical Weather Prediction) data with artificial intelligence technique. The experiment for the South East coast in Korea, 2015-2020,showed a 40% decreased MAE (Mean Absolute Error) than the generic CMOD (C-band Model) function, and the CC (correlation coefficient) of our method was 0.901 and 0.826, respectively, for the U and V wind components. We created 10m resolution sea wind maps for the study area, which showed a typical trend of wind distribution and a spatially detailed wind pattern as well. The proposed method can be applied to surveying for wind power and information service for coastal disaster prevention and leisure activities.

Derivation of Typical Meteorological Year of Daejeon from Satellite-Based Solar Irradiance (위성영상 기반 일사량을 활용한 대전지역 표준기상년 데이터 생산)

  • Kim, Chang Ki;Kim, Shin-Young;Kim, Hyun-Goo;Kang, Yong-Heack;Yun, Chang-Yeol
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.6
    • /
    • pp.27-36
    • /
    • 2018
  • Typical Meteorological Year Dataset is necessary for the renewable energy feasibility study. Since National Renewable Energy Laboratory has been built Typical Meteorological Year Dataset in 1978, gridded datasets taken from numerical weather prediction or satellite imagery are employed to produce Typical Meteorological Year Dataset. In general, Typical Meteorological Year Dataset is generated by using long-term in-situ observations. However, solar insolation is not usually measured at synoptic observing stations and therefore it is limited to build the Typical Meteorological Year Dataset with only in-situ observation. This study attempts to build the Typical Meteorological Year Dataset with satellite derived solar insolation as an alternative and then we evaluate the Typical Meteorological Year Dataset made by using satellite derived solar irradiance at Daejeon ground station. The solar irradiance is underestimated when satellite imagery is employed.

Development of Day Fog Detection Algorithm Based on the Optical and Textural Characteristics Using Himawari-8 Data

  • Han, Ji-Hye;Suh, Myoung-Seok;Kim, So-Hyeong
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.117-136
    • /
    • 2019
  • In this study, a hybrid-type of day fog detection algorithm (DFDA) was developed based on the optical and textural characteristics of fog top, using the Himawari-8 /Advanced Himawari Imager data. Supplementary data, such as temperatures of numerical weather prediction model and sea surface temperatures of operational sea surface temperature and sea ice analysis, were used for fog detection. And 10 minutes data from visibility meter from the Korea Meteorological Administration were used for a quantitative verification of the fog detection results. Normalized albedo of fog top was utilized to distinguish between fog and other objects such as clouds, land, and oceans. The normalized local standard deviation of the fog surface and temperature difference between fog top and air temperature were also assessed to separate the fog from low cloud. Initial threshold values (ITVs) for the fog detection elements were selected using hat-shaped threshold values through frequency distribution analysis of fog cases.And the ITVs were optimized through the iteration method in terms of maximization of POD and minimization of FAR. The visual inspection and a quantitative verification using a visibility meter showed that the DFDA successfully detected a wide range of fog. The quantitative verification in both training and verification cases, the average POD (FAR) was 0.75 (0.41) and 0.74 (0.46), respectively. However, sophistication of the threshold values of the detection elements, as well as utilization of other channel data are necessary as the fog detection levels vary for different fog cases(POD: 0.65-0.87, FAR: 0.30-0.53).

Retrieval and Quality Assessment of Atmospheric Winds from the Aircraft-Based Observation Near Incheon International Airport, Korea (인천 공항 주변 고해상도 항공기 추적 정보 기반의 바람 관측자료 생산 및 품질 검증)

  • Kim, Jeongmin;Kim, Jung-Hoon
    • Atmosphere
    • /
    • v.32 no.4
    • /
    • pp.323-340
    • /
    • 2022
  • We analyzed the high-resolution wind data of Aircraft-Based Observation from the Mode-Selective Enhanced Surveillance (Mode-S EHS) data in Korea. For assessment of its quality, the Mode-S wind data was compared with the ECMWF ReAnalysis 5 (ERA5) reanalysis and Aircraft Meteorological Data Relay (AMDAR) data for more than 3-months from 7 May 2021 to 24 August 2021 near Incheon International Airport, Korea. Considering that the AMDAR reports are not provided by all commercial aircraft, total number of the Mode-S derived wind data with a second sampling rate was about twice larger than that of available AMDAR wind data. After the quality control procedures by removing erroneous samples, it was found that the root mean square errors (RMSEs) of the Mode-S retrieved winds are similar to that from the AMDAR winds. In particular, between 550 and 650 hPa levels, RMSE of the Mode-S (AMDAR) zonal wind against ERA5 data was about 2.3 m s-1 (1.9 m s-1), and those increased to 3.3 m s-1 (2.4 m s-1) in 200~500 hPa levels. A similar trend was found in the meridional wind, but a distinct positive mean bias of 2.16 m s-1 was observed between 875 and 1,000 hPa levels. Winds retrieved from the Mode-S also showed a good agreement directly with AMDAR data. As the Mode-S provides a large amount of data with a reliable quality, it can be useful for both data assimilation in the numerical weather prediction model and situational awareness of wind and turbulence for aviation safety in Korea.

Estimation of ESP Probability considering Weather Outlook (기상예보를 고려한 ESP 유출 확률 산정)

  • Ahn, Jung Min;Lee, Sang Jin;Kim, Jeong Kon;Kim, Joo Cheol;Maeng, Seung Jin;Woo, Dong Hyeon
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.3
    • /
    • pp.264-272
    • /
    • 2011
  • The objective of this study was to develop a model for predicting long-term runoff in a basin using the ensemble streamflow prediction (ESP) technique and review its reliability. To achieve the objective, this study improved not only the ESP technique based on the ensemble scenario analysis of historical rainfall data but also conventional ESP techniques used in conjunction with qualitative climate forecasting information, and analyzed and assessed their improvement effects. The model was applied to the Geum River basin. To undertake runoff forecasting, this study tried three cases (case 1: Climate Outlook + ESP, case 2: ESP probability through monthly measured discharge, case 3: Season ESP probability of case 2) according to techniques used to calculate ESP probabilities. As a result, the mean absolute error of runoff forecasts for case 1 proposed by this study was calculated as 295.8 MCM. This suggests that case 1 showed higher reliability in runoff forecasting than case 2 (324 MCM) and case 3 (473.1 MCM). In a discrepancy-ratio accuracy analysis, the Climate Outlook + ESP technique displayed 50.0%. This suggests that runoff forecasting using the Climate Outlook +ESP technique with the lowest absolute error was more reliable than other two cases.

Analysis for Daily Food Delivery & Consumption Trends in the Post-Covid-19 Era through Big Data

  • Jeong, Chan-u;Moon, Yoo-Jin;Hwang, Young-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.231-238
    • /
    • 2021
  • In this paper, we suggest a method of analysis for daily food delivery & consumption trends through big data of the post-Covid-19 era. Through analysis of big data and the database system, four analyzed factors, excluding weather, was proved to have significant correlation with delivery sales for 'Baedarui Minjok' of a catering delivery application. The research found that KBS, MBC and SBS Media showed remarkable results in food delivery & consumption sales soaring up to about 60 percent increase on the day after the Covid-19 related new article was issued. In addition, it proved that mobile media and web surfing were the main factors in increasing sales of food delivery & consumption applications, suggesting that viral marketing and emotional analysis by crawling data from SNS used by Millennials might be an important factor in sales growth. It can contribute the companies in the economic recession era to survive by providing the method for analyzing the big data and increasing their sales.

Analysis and Prediction of (Ultra) Air Pollution based on Meteorological Data and Atmospheric Environment Data (기상 데이터와 대기 환경 데이터 기반 (초)미세먼지 분석과 예측)

  • Park, Hong-Jin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.4
    • /
    • pp.328-337
    • /
    • 2021
  • Air pollution, which is a class 1 carcinogen, such as asbestos and benzene, is the cause of various diseases. The spread of ultra-air pollution is one of the important causes of the spread of the corona virus. This paper analyzes and predicts fine dust and ultra-air pollution from 2015 to 2019 based on weather data such as average temperature, precipitation, and average wind speed in Seoul and atmospheric environment data such as SO2, NO2, and O3. Linear regression, SVM, and ensemble models among machine learning models were compared and analyzed to predict fine dust by grasping and analyzing the status of air pollution and ultra-air pollution by season and month. In addition, important features(attributes) that affect the generation of fine dust and ultra-air pollution are identified. The highest ultra-air pollution was found in March, and the lowest ultra-air pollution was observed from August to September. In the case of meteorological data, the data that has the most influence on ultra-air pollution is average temperature, and in the case of meteorological data and atmospheric environment data, NO2 has the greatest effect on ultra-air pollution generation.

Development and Wind Speed Evaluation of Ultra High Resolution KMAPP Using Urban Building Information Data (도시건물정보를 반영한 초고해상도 규모상세화 수치자료 산출체계(KMAPP) 구축 및 풍속 평가)

  • Kim, Do-Hyoung;Lee, Seung-Wook;Jeong, Hyeong-Se;Park, Sung-Hwa;Kim, Yeon-Hee
    • Atmosphere
    • /
    • v.32 no.3
    • /
    • pp.179-189
    • /
    • 2022
  • The purpose of this study is to build and evaluate a high-resolution (50 m) KMAPP (Korea Meteorological Administration Post Processing) reflecting building data. KMAPP uses LDAPS (Local Data Assimilation and Prediction System) data to detail ground wind speed through surface roughness and elevation corrections. During the detailing process, we improved the vegetation roughness data to reflect the impact of city buildings. AWS (Automatic Weather Station) data from a total of 48 locations in the metropolitan area including Seoul in 2019 were used as the observation data used for verification. Sensitivity analysis was conducted by dividing the experiment according to the method of improving the vegetation roughness length. KMAPP has been shown to improve the tendency of LDAPS to over simulate surface wind speeds. Compared to LDAPS, Root Mean Square Error (RMSE) is improved by approximately 23% and Mean Bias Error (MBE) by about 47%. However, there is an error in the roughness length around the Han River or the coastline. Accordingly, the surface roughness length was improved in KMAPP and the building information was reflected. In the sensitivity experiment of improved KMAPP, RMSE was further improved to 6% and MBE to 3%. This study shows that high-resolution KMAPP reflecting building information can improve wind speed accuracy in urban areas.

Heating Performance Prediction of Low-depth Modular Ground Heat Exchanger based on Artificial Neural Network Model (인공신경망 모델을 활용한 저심도 모듈러 지중열교환기의 난방성능 예측에 관한 연구)

  • Oh, Jinhwan;Cho, Jeong-Heum;Bae, Sangmu;Chae, Hobyung;Nam, Yujin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.3
    • /
    • pp.1-6
    • /
    • 2022
  • Ground source heat pump (GSHP) system is highly efficient and environment-friendly and supplies heating, cooling and hot water to buildings. For an optimal design of the GSHP system, the ground thermal properties should be determined to estimate the heat exchange rate between ground and borehole heat exchangers (BHE) and the system performance during long-term operating periods. However, the process increases the initial cost and construction period, which causes the system to be hindered in distribution. On the other hand, much research has been applied to the artificial neural network (ANN) to solve problems based on data efficiently and stably. This research proposes the predictive performance model utilizing ANN considering local characteristics and weather data for the predictive performance model. The ANN model predicts the entering water temperature (EWT) from the GHEs to the heat pump for the modular GHEs, which were developed to reduce the cost and spatial disadvantages of the vertical-type GHEs. As a result, the temperature error between the data and predicted results was 3.52%. The proposed approach was validated to predict the system performance and EWT of the GSHP system.

Disease Prediction System based on WEB (WEB 기반 질병 예측 시스템)

  • Hong, YouSik;Han, Y.H.;Lee, W.B.
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.125-132
    • /
    • 2022
  • The Ministry of Environment recently analyzed the output data of 10 fine dust measuring stations and, as a result, announced that about 60% had an error that the existing atmospheric measurement concentration was higher. In order to accurately predict fine dust, the wind direction and measurement position must be corrected. In this paper, in order to solve these problems, fuzzy rules are used to solve these problems. In addition, in order to calculate the fine particulate sensation index actually felt by pedestrians on the street, a computer simulation experiment was conducted to calculate the fine particulate sensation index in consideration of weather conditions, temperature conditions, humidity conditions, and wind conditions.