• Title/Summary/Keyword: Weather Intensity

Search Result 289, Processing Time 0.026 seconds

Mesoscale Features and Forecasting Guidance of Heavy Rain Types over the Korean Peninsula (한반도 호우유형의 중규모 특성 및 예보 가이던스)

  • Kim, Sunyoung;Song, Hwan-Jin;Lee, Hyesook
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.463-480
    • /
    • 2019
  • This study classified heavy rain types from K-means clustering for the hourly relationship between rainfall intensity and cloud top height over the Korean peninsula, and then examined their statistical characteristics for the period of June~August 2013~2018. Total rainfall amount of warm-type events was 2.65 times larger than that of the cold-type, whereas the lightning frequency divided by total rainfall for the warm-type was only 46% of the cold-type. Typical cold-type cases exhibited high cloud top height around 16 km, large reflectivity in the upper layer, and frequent lightning flashes under convectively unstable condition. Phenomenally, the cold-type cases corresponded to cloud cluster or multi-cell thunderstorms. However, two warm-type cases related to Changma and typhoon were characterized by heavy rainfall due to long duration, relatively low cloud top height and upper-level reflectivity, and the absence of lightning under the convectively neutral and extremely humid conditions. This study further confirmed that the forecast skill of rainfall could be improved by applying correction factor with the overestimation for cold-type and underestimation for warm-type cases in the Local Data Assimilation and Prediction System (LDAPS) operational model (e.g., BIAS score was improved by 5%).

Effects of Snowfall Intensity on Freeway Travel Speed (Focused on Seohaean Freeway) (강설에 따른 고속도로 주행속도 변화연구 - 서해안고속도로를 중심으로 -)

  • Hong, Sung-Min;Oh, Cheol;Yang, Chung-Hoen;Jeon, Woo-Hoon
    • International Journal of Highway Engineering
    • /
    • v.14 no.4
    • /
    • pp.93-101
    • /
    • 2012
  • PURPOSES : Adverse weather conditions such as heavy rain, heavy snowfall, and thick fog and so on have highly affect on the change in traffic conditions on the road. In particular, heavy snowfall causes capacity reduction as well as crash occurrence. This study investigated the effects of snowfall on speed on a freeway. METHODS : Vehicle detection systems data were matched with corresponding weather station data by regression analysis. RESULTS : The results show that the travel speed is reduced by 6.7% under little snowfall and by 12.8% under heavy snowfall. Regarding the speed variation, 8.7% and 114.7% increases are observed under little snowfall and heavy snowfall, respectively. It is also found that 1 cm increase in snowfall leads to 0.4% decrease in travel speed. In addition, the travel speed increases by 0.4% when the temperature increases by $1^{\circ}C$. CONCLUSIONS : It is expected that the outcome of this study will be useful in establishing more effective strategies for winter operations and road maintenance in practice.

Radar Quantitative Precipitation Estimation using Long Short-Term Memory Networks

  • Thi, Linh Dinh;Yoon, Seong-Sim;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.183-183
    • /
    • 2020
  • Accurate quantitative precipitation estimation plays an important role in hydrological modelling and prediction. Instantaneous quantitative precipitation estimation (QPE) by utilizing the weather radar data is a great applicability for operational hydrology in a catchment. Previously, regression technique performed between reflectivity (Z) and rain intensity (R) is used commonly to obtain radar QPEs. A novel, recent approaching method which might be applied in hydrological area for QPE is Long Short-Term Memory (LSTM) Networks. LSTM networks is a development and evolution of Recurrent Neuron Networks (RNNs) method that overcomes the limited memory capacity of RNNs and allows learning of long-term input-output dependencies. The advantages of LSTM compare to RNN technique is proven by previous works. In this study, LSTM networks is used to estimate the quantitative precipitation from weather radar for an urban catchment in South Korea. Radar information and rain-gauge data are used to evaluate and verify the estimation. The estimation results figure out that LSTM approaching method shows the accuracy and outperformance compared to Z-R relationship method. This study gives us the high potential of LSTM and its applications in urban hydrology.

  • PDF

Development of Web-Based Wind Data Analysis System for HeMOSU-1 (웹기반 해모수-1 풍황자료 분석 시스템 개발)

  • Ryu, Ki-Wahn;Park, Kun-Sung;Lee, Jong-Hwa;Oh, Soo-Yun;Kim, Ji-Young;Park, Myoung-Ho
    • Journal of Wind Energy
    • /
    • v.4 no.1
    • /
    • pp.60-67
    • /
    • 2013
  • A web-based program was developed for analyzing weather and structure data from the HeMOSU-1 offshore meteorological mast installed by the KEPCO Research Institute, and 35 km west-southwestward away from Gyeokpo located in Jeonbuk province. All of the measured data are obtained through the data transmitter and the server systems equipped on the HeMOSU-1 and the aerodynamic laboratory in Chonbuk National University respectively. The dualised server system consists of two servers, one is for logging the 1 second based raw data with 10 minute averaged values, and the other is for managing web page with processed weather data. Daily or weekly 10-min averaged data can be provided based on the input date by users. Processed weather data such as wind rose, Weibull distribution, diurnal distribution, turbulence intensity according to wind speed, wind energy density, and so forth are visualized through the web page which would be both useful and informative for developing the wind farm or designing a wind blade for the wind farm nearby southwest sea around the Korean Peninsula. The URL for this web page is http://www.hemosu.org/.

Analysis of Long-term Variations of Sunshine Duration and Precipitation Intensity Using Surface Meteorological Data Observed in Seoul and Busan in Korea (서울과 부산에서 관측된 일조 시간 및 강수 강도의 장기 변동 분석)

  • Lee, Hyo-Jung;Kim, Cheol-Hee
    • Atmosphere
    • /
    • v.19 no.3
    • /
    • pp.243-253
    • /
    • 2009
  • In other to interpret the long-term variations of sunshine duration, cloud lifetime, and precipitation intensity observed in and around Seoul and Busan for the period from 1986 to 2005, aerosol indirect effect was employed and applied. For the identification of long-term trend of aerosol concentration, observed visibility and AOT of AERONET sunphotometer data were also used over the same regions. The result showed that the time series of visibility was decreased and those of AOT increased, especially trends were remarkable in 2000s. In both regions, occurrence frequencies of observed cloudiness (cloud amount ${\leq}6/10$) and strong precipitation (rain rate > $0.5mmhour^{-1}$) have been steadily increased while those of cloudiness (cloud amount > 7/10) and weak precipitation (rain rate ${\leq}0.2mmhour^{-1}$) decreased. These results are corresponding to the trend of both visibility and AERONET data, implying the aerosol indirect effect that makes size of cloud droplet reduce, cloud life-time longer and precipitation efficiency decreased. Our findings demonstrate that, although these phenomena are not highly significant, weather and climate system over Korean urban area have been changed toward longer lifetime of small cloudiness and increasing precipitation intensity as a result of increased aerosol indirect effect.

On the Characteristics of the Precipitation Patterns in Korea Due to Climate Change

  • Park, Jong-Kil;Seong, Ihn-Cheol;Kim, Baek-Jo;Jung, Woo-Sik;Lu, Riyu
    • Journal of Environmental Science International
    • /
    • v.23 no.1
    • /
    • pp.25-37
    • /
    • 2014
  • In the present study, we analyzed precipitation patterns and diurnal variation trends of hourly precipitation intensity due to climate change. To that end, we used the hourly precipitation data obtained from 26 weather stations around South Korea, especially Busan, from 1970 to 2009. The results showed that the hourly precipitation was concentrated on a specific time of day. In particular, the results showed the so-called "morning shift" phenomenon, which is an increase in the frequency and intensity of hourly precipitation during the morning. The morning shift phenomenon was even more pronounced when a higher level of hourly precipitation intensity occurred throughout the day. Furthermore, in many regions of Korea, including Busan, this morning shift phenomenon became more prevalent as climate change progressed.

Tsunami-induced Change Detection Using SAR Intensity and Texture Information Based on the Generalized Gaussian Mixture Model

  • Jung, Min-young;Kim, Yong-il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.2
    • /
    • pp.195-206
    • /
    • 2016
  • The remote sensing technique using SAR data have many advantages when applied to the disaster site due to its wide coverage and all-weather acquisition availability. Although a single-pol (polarimetric) SAR image cannot represent the land surface better than a quad-pol SAR image can, single-pol SAR data are worth using for disaster-induced change detection. In this paper, an automatic change detection method based on a mixture of GGDs (generalized Gaussian distribution) is proposed, and usability of the textural features and intensity is evaluated by using the proposed method. Three ALOS/PALSAR images were used in the experiments, and the study site was Norita City, which was affected by the 2011 Tohoku earthquake. The experiment results showed that the proposed automatic change detection method is practical for disaster sites where the large areas change. The intensity information is useful for detecting disaster-induced changes with a 68.3% g-mean, but the texture information is not. The autocorrelation and correlation show the interesting implication that they tend not to extract agricultural areas in the change detection map. Therefore, the final tsunami-induced change map is produced by the combination of three maps: one is derived from the intensity information and used as an initial map, and the others are derived from the textural information and used as auxiliary data.

Effect on the PM10 Concentration by Wind Velocity and Wind Direction (풍속과 풍향이 미세먼지농도에 미치는 영향)

  • Chae, Hee-Jeong
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.3
    • /
    • pp.37-54
    • /
    • 2009
  • The study has analyzed impacts and intensity of weather that affect $PM_{10}$ concentration based on PM10 forecast conducted by the city of Seoul in order to identify ways to improve the accuracy of PM10 forecast. Variables that influence $PM_{10}$ concentration include not only velocity and direction of the wind and rainfalls, but also those including secondary particulate matter, which were identified to greatly influence the concentration in complicated manner as well. In addition, same variables were found to have different impacts depending on seasons and conditions of other variables. The study found out that improving accuracy of $PM_{10}$ concentration forecast face some limits as it is greatly influenced by the weather. As an estimation, this study assumed that basic research units and artificially estimated pollutant emissions, study on mechanisms of secondary particulate matter productions, observatory compliment, and enhanced forecaster's expertise are needed for better forecast.

A Research on the Approximate Formulae for the Speed Loss at Sea (해상에서의 선속 손실량 산정을 위한 약산식 개발 연구)

  • KWON YOUNG-JOONG;KIM DAI YOUNG
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.2 s.63
    • /
    • pp.90-93
    • /
    • 2005
  • An improved approximate formula is presented for Series 60 forms, modifying the approximate formula, developed by the Author in 1983. The weather formula is based on interpretations of detailed calculations of speed loss, due to wind(van Berlekom), motions(Maruo), and wave reflection resistance(Kwon). Comparison is made between the result of the approximate formula and the one of detailed calculation. The result of the formula is also compared with some published full-scale data for speed loss.

Comparison between Expected and Actual Capacity Factors of a Wind Farm (풍력발전단지의 예측이용율과 실제이용율 비교분석에 관한 연구)

  • Koh, Byung-Euk;Moon, Seung-Jae;Yoo, Hoseon
    • Plant Journal
    • /
    • v.7 no.1
    • /
    • pp.40-48
    • /
    • 2011
  • This study shows the comparison between expected and actual capacity factors of a wind farm through wind resource analyzation. The expected capacity factor comes from an 'automatic weather system' run by the Korean national weather service and a 'meteorological mast' run by a project owner. Based on this comparison and analysis, the importance of meteorological mast micro-siting and selection of wind turbine class and type, will be studied along with presenting important implications for wind farm expansion and development.

  • PDF