• Title/Summary/Keyword: Weather Detection Algorithm

Search Result 96, Processing Time 0.024 seconds

Improvement of a Detecting Algorithm for Geometric Center of Typhoon using Weather Radar Data (레이더 자료를 이용한 기하학적 태풍중심 탐지 기법 개선)

  • Jung, Woomi;Suk, Mi-Kyung;Choi, Youn;Kim, Kwang-Ho
    • Atmosphere
    • /
    • v.30 no.4
    • /
    • pp.347-360
    • /
    • 2020
  • The automatic algorithm optimized for the Korean Peninsula was developed to detect and track the center of typhoon based on a geometrical method using high-resolution retrieved WISSDOM (WInd Syntheses System using DOppler Measurements) wind and reflectivity data. This algorithm analyzes the center of typhoon by detecting the geometric circular structure of the typhoon's eye in radar reflectivity and vorticity 2D field data. For optimizing the algorithm, the main factors of the algorithm were selected and the optimal thresholds were determined through sensitivity experiments for each factor. The center of typhoon was detected for 5 typhoon cases that approached or landed on Korean Peninsula. The performance was verified by comparing and analyzing from the best track of Korea Meteorological Administration (KMA). The detection rate for vorticity use was 15% higher on average than that for reflectivity use. The detection rate for vorticity use was up to 90% for DIANMU case in 2010. The difference between the detected locations and best tracks of KMA was 0.2° on average when using reflectivity and vorticity. After the optimization, the detection rate was improved overall, especially the detection rate more increased when using reflectivity than using vorticity. And the difference of location was reduced to 0.18° on average, increasing the accuracy.

Development of the Weather Detection Algorithm using CCTV Images and Temperature, Humidity (CCTV 영상과 온·습도 정보를 이용한 기후검출 알고리즘 개발)

  • Park, Beung-Raul;Lim, Jong-Tea
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.2
    • /
    • pp.209-217
    • /
    • 2007
  • This paper proposed to a detection scheme of weather information that is a part of CCTV Images Weather Detection System using CCTV images and Temperature, Humidity. The previous Partial Weather Detection System uses how to acquire weather information using images on the Road. In the system the contrast and RGB Values using clear images are gained. This information is distributed a input images to cloud, rain, snow and fog images. That is, this information is compared the snow and the fog images for acquisition more correctness information us ing difference images and binary images. Currently, We use to environment sense system, but we suggest a new Weather Detection Algorithm to detect weather information using CCTV images. Our algorithm is designed simply and systematically to detect and separate special characteristics of images from CCTV images. and using temperature & humidity in formation. This algorithm, there is more complex to implement than how to use DB with high overhead of time and space in the previous system. But our algorithm can be implement with low cost' and can be use the system in real work right away. Also, our algorithm can detect the exact information of weather with adding in formation including temperature, humidity, date, and time. At last, this paper s how the usefulness of our algorithm.

  • PDF

Development of the Road Weather Detection Algorithm on CCTV Video Images using Double Decision Trees (이중결정트리를 이용한 CCTV영상에서의 도로 날씨정보검출알고리즘 개발)

  • Park, Beung-Raul;NamKoong, Sung;Lim, Joong-Tae
    • The KIPS Transactions:PartB
    • /
    • v.14B no.6
    • /
    • pp.445-452
    • /
    • 2007
  • We proposed a detection scheme of weather information in CCTV video images in this paper. The scheme obtains the RGB distribution of shiny day and divide a target image into cloud, rain, snow and for RGB distributions. shiny day RGB distribution. Our scheme designed systematically to detection and separation special characteristics of images from complex weather information. Our algorithm has less overhead than the previous methods to use weather database DB at the view of time and space. And our algorithm can be use in real world system with low cost of implementation. Also, our algorithm use informations of temperature, humidity, date, and time to detect the information of weather with high quality.

Tropospheric Anomaly Detection in Multi-Reference Stations Environment during Localized Atmospheric Conditions-(2) : Analytic Results of Anomaly Detection Algorithm

  • Yoo, Yun-Ja
    • Journal of Navigation and Port Research
    • /
    • v.40 no.5
    • /
    • pp.271-278
    • /
    • 2016
  • Localized atmospheric conditions between multi-reference stations can bring the tropospheric delay irregularity that becomes an error terms affecting positioning accuracy in network RTK environment. Imbalanced network error can affect the network solutions and it can corrupt the entire network solution and degrade the correction accuracy. If an anomaly could be detected before the correction message was generated, it is possible to eliminate the anomalous satellite that can cause degradation of the network solution during the tropospheric delay anomaly. An atmospheric grid that consists of four meteorological stations was used to detect an inhomogeneous weather conditions and tropospheric anomaly applied AWSs (automatic weather stations) meteorological data. The threshold of anomaly detection algorithm was determined based on the statistical weather data of AWSs for 5 years in an atmospheric grid. From the analytic results of anomaly detection algorithm it showed that the proposed algorithm can detect an anomalous satellite with an anomaly flag generation caused tropospheric delay anomaly during localized atmospheric conditions between stations. It was shown that the different precipitation condition between stations is the main factor affecting tropospheric anomalies.

Development of Radar-enabled AI Convergence Transportation Entities Detection System for Lv.4 Connected Autonomous Driving in Adverse Weather

  • Myoungho Oh;Mun-Yong Park;Kwang-Hyun Lim
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.190-201
    • /
    • 2023
  • Securing transportation safety infrastructure technology for Lv.4 connected autonomous driving is very important for the spread of autonomous vehicles, and the safe operation of level 4 autonomous vehicles in adverse weather has limitations due to the development of vehicle-only technology. We developed the radar-enabled AI convergence transportation entities detection system. This system is mounted on fixed and mobile supports on the road, and provides excellent autonomous driving situation recognition/determination results by converging transportation entities information collected from various monitoring sensors such as 60GHz radar and EO/IR based on artificial intelligence. By installing such a radar-enabled AI convergence transportation entities detection system on an autonomous road, it is possible to increase driving efficiency and ensure safety in adverse weather. To secure competitive technologies in the global market, the development of four key technologies such as ① AI-enabled transportation situation recognition/determination algorithm, ② 60GHz radar development technology, ③ multi-sensor data convergence technology, and ④ AI data framework technology is required.

Analysis of Detection Method for the Weather Change in a Local Weather Radar (국지적 기상 레이다에서의 기상 변화 탐지 방법 분석)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.10
    • /
    • pp.1345-1352
    • /
    • 2021
  • Most of weather radar systems are used to monitor the whole weather situation for the very wide and medium-to-long range area. However, as the likelihood of occurrence of the local weather hazards is increased in recent days, it is very important to detect these wether phenomena with a local weather radar. For this purpose, it is necessary to detect the fast varying low altitude weather conditions and the effect of the ground surface clutter is more evident. Therefore, in this paper, the newly suggested method is explained and analyzed for detection of weather hazards such as the gust and wind shear using the fluctuation of wind velocities and the gradient of wind velocities among range cells. It is shown that the suggested method can be used efficiently in the future for faster detection of weather change through the simple algorithm implementation and also the effect of the ground clutter can be minimized in the detection procedure.

A Study for Video-based Vehicle Surveillance on Outdoor Road (실외 도로에서의 영상기반 차량 감시에 관한 연구)

  • Park, Keun-Soo;Kim, Hyun-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.11
    • /
    • pp.1647-1654
    • /
    • 2013
  • Detection performance of the vehicle on the road depends on weather conditions, the shadow by the movement of the sun, or illumination changes, etc. In this paper, a vehicle detection system in conjunction with a robust background estimate algorithm to environment change on the road in daytime is proposed. Gaussian Mixture Model is applied as background estimation algorithm, and also, Adaboost algorithm is applied to detect the vehicle for candidate region. Through the experiments with input videos obtained from a various weather conditions at the same actual road, the proposed algorithm were useful to detect vehicles in the road.

Tropospheric Anomaly Detection in Multi-reference Stations Environment during Localized Atmosphere Conditions-(1) : Basic Concept of Anomaly Detection Algorithm

  • Yoo, Yun-Ja
    • Journal of Navigation and Port Research
    • /
    • v.40 no.5
    • /
    • pp.265-270
    • /
    • 2016
  • Extreme tropospheric anomalies such as typhoons or regional torrential rain can degrade positioning accuracy of the GPS signal. It becomes one of the main error terms affecting high-precision positioning solutions in network RTK. This paper proposed a detection algorithm to be used during atmospheric anomalies in order to detect the tropospheric irregularities that can degrade the quality of correction data due to network errors caused by inhomogeneous atmospheric conditions between multi-reference stations. It uses an atmospheric grid that consists of four meteorological stations and estimates the troposphere zenith total delay difference at a low performance point in an atmospheric grid. AWS (automatic weather station) meteorological data can be applied to the proposed tropospheric anomaly detection algorithm when there are different atmospheric conditions between the stations. The concept of probability density distribution of the delta troposphere slant delay was proposed for the threshold determination.

Fire Detection in Outdoor Using Statistical Characteristics of Smoke (연기의 통계적 특성을 이용한 실외 화재 감지)

  • Kim, Hyun-Tae;Park, Jang-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.2
    • /
    • pp.149-154
    • /
    • 2014
  • Detection performance of fire detection in the outdoor depends on weather conditions, the shadow by the movement of the sun, or illumination changes. In this paper, a smoke detection in conjunction with a robust background estimate algorithm to environment change in the outdoor in daytime is proposed. Gaussian Mixture Model (GMM) is applied as background estimation, and also, statistical characteristics of smoke is applied to detect the smoke for separated candidate region. Through the experiments with input videos obtained from a various weather conditions, the proposed algorithms were useful to detect smoke in the outdoor.

Implementation and Evaluation of Multiple Target Algorithm for Automotive Radar Sensor (차량용 레이더 센서를 위한 다중 타겟 알고리즘의 구현과 평가)

  • Ryu, In-hwan;Won, In-Su;Kwon, Jang-Woo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.2
    • /
    • pp.105-115
    • /
    • 2017
  • Conventional traffic detection sensors such as loop detectors and image sensors are expensive to install and maintain and require different detection algorithms depending on the night and day and have a disadvantage that the detection rate varies widely depending on the weather. On the other hand, the millimeter-wave radar is not affected by bad weather and can obtain constant detection performance regardless of day or night. In addition, there is no need for blocking trafficl for installation and maintenance, and multiple vehicles can be detected at the same time. In this study, a multi-target detection algorithm for a radar sensor with this advantage was devised / implemented by applying a conventional single target detection algorithm. We performed the evaluation and the meaningful results were obtained.