Online or sequential learning is one of the most basic and powerful method to train neuron network, and it has been widely used in disease detection, weather prediction and other realistic classification problem. At present, there are many algorithms in this area, such as MRAN, GAP-RBFN, OS-ELM, SVM and SMC-RBF. Among them, SMC-RBF has the best performance; it has less number of hidden neurons, and best efficiency. However, all the existing algorithms use signal normal distribution as kernel function, which means the output of the kernel function is same at the different direction. In this paper, we use multi-variable normal distribution as kernel function, and derive EKF learning formulas for multi-variable normal distribution kernel function. From the result of the experience, we can deduct that the proposed method has better efficiency performance, and not sensitive to the data sequence.
Particulate Matter (PM2.5) has various adverse effects on health. Climate and industry activity and traffic volume are the main causes, especially in urban area. In order to construct an effective forecasting system, many measurement systems are required, but it is impossible in reality. Therefore, in this study, we propose a method to infer PM2.5 condition by using rule induction technique. The experimental results showed a classification accuracy of 71%.
International Journal of Advanced Culture Technology
/
제4권4호
/
pp.23-29
/
2016
In this paper, the learning technique for CNN processor on vehicle is proposed. In the case of conventional CNN processors, weighted values learned through training are stored for use, but when there is distortion in the image due to the weather conditions, the accuracy is decreased. Therefore, the method of enhancing the input image for classification is general, but it has the weakness of increasing the processor size. To solve this problem, the CNN performance was improved in this paper through the learning method of the distorted image. As a result, the proposed method showed improvement of approximately 38% better accuracy than the conventional method.
Meteorological Joint Frequency Function required indispensably in long-term air quality prediction models were discussed for practical application in Korea. The algorithm, proposed by Turner(l964), is processed with daily solar insolation and cloudiness and height basically using Pasquill's atmospheric stability classification method. In spite of its necessity and applicability, the computer program, called STAR(STability ARray), had some significant difficulties caused from the difference in meteorological data format between that of original U.S. version and Korean's. To cope with the problems, revised STAR program for Korean users were composed of followings; applicability in any site of Korea with regard to local solar angle modification; feasibility with both of data which observed by two classes of weather service centers; and examination on output format associated with prediction models which should be used.
This study is on the production and the classification of a new appreciation methods of seascape through materials in the words of Korean popular songs. In advance, it is necessary to understand the popular songs as collective representation and the songs are analytic data. In this study, some essential elements of seascape in popular songs are analyzed and classified. They are; 1. visible elements-weather, time, season and object. 2. all senses-vision, audition, olfaction, tactile sense, and spatial sense. 3. the line of vision-static line of vision and dynamic line of vision. In this way data is produced, and then the result of this study makes appreciation methods of seascape developed. In this way, this study results in developed appreciation of seascape. This study on new understanding of appreciation methods of seascape is on the basis of a design method of water-front that is considered a visible scene, not a design of construction elements.
The minimum temperatures are important element in the daily human life, the climatic classification, and so on. In this study, the authors aim to make an analysis the distribution characteristics of minimum temperatures of 95 weather stations in Korea by using the Climatological Standard Normals of Korea VolumeI, VolumeII, and the Climatological Standard Normals of North Korea. The important results are as follows 1) The daily, fifthly, and tenthly minimum temperatures show the highest rate of occurrance on 14th of January( Occurrance rate : 56.6% ), 16~20th of January( 37.6% ), and the middle ten days of January( 82.1% ) respectively. 2) In the regional distribution of minimum temperatures in winter, the values of northern part, inland area, and west coastal region are lower than those of southern, coastal, and east coastal regions respectively. And, bigger cities and industrial area( Seoul, Incheon, Daejeon, Daegu, etc. ) have larger values than the its vicinities. 3) When the daily minimum temperature is $0^{\circ}C$ and less, the days of northern part, inland area, and wests coastal region are higher than those of southern, coastal, and east coastal regions respectively.
In this paper, a vehicle recognition algorithm based on deep convolutional neural network and compression dictionary is proposed. Firstly, the network structure of fine vehicle recognition based on convolutional neural network is introduced. Then, a vehicle recognition system based on multi-scale pyramid convolutional neural network is constructed. The contribution of different networks to the recognition results is adjusted by the adaptive fusion method that adjusts the network according to the recognition accuracy of a single network. The proportion of output in the network output of the entire multiscale network. Then, the compressed dictionary learning and the data dimension reduction are carried out using the effective block structure method combined with very sparse random projection matrix, which solves the computational complexity caused by high-dimensional features and shortens the dictionary learning time. Finally, the sparse representation classification method is used to realize vehicle type recognition. The experimental results show that the detection effect of the proposed algorithm is stable in sunny, cloudy and rainy weather, and it has strong adaptability to typical application scenarios such as occlusion and blurring, with an average recognition rate of more than 95%.
In recent years, artificial intelligence (AI) services have become one of the most essential parts to extend human capabilities in various fields such as face recognition for security, weather prediction, and so on. Various learning algorithms for existing AI services are utilized, such as classification, regression, and deep learning, to increase accuracy and efficiency for humans. Nonetheless, these services face many challenges such as fake news spread on social media, stock selection, and volatility delay in stock prediction systems and inaccurate movie-based recommendation systems. In this paper, various algorithms are presented to mitigate these issues in different systems and services. Convolutional neural network algorithms are used for detecting fake news in Korean language with a Word-Embedded model. It is based on k-clique and data mining and increased accuracy in personalized recommendation-based services stock selection and volatility delay in stock prediction. Other algorithms like multi-level fusion processing address problems of lack of real-time database.
A classification of snowfall type based on development mechanism is proposed using previous snowfall studies, operational experiences, etc. Five types are proposed: snowfall caused by 1) airmass transformation (AT type), 2) terrain effects in a situation of expanding Siberian High (TE type), 3) precipitation systems associated with extratropical cyclones (EC type), 4) indirect effects of extratropical cyclones passing over the sea to the south of the Korean peninsula (ECS type), and 5) combined effects of TE and ECS types (COM type). Snowfall events during 1981-2001 are classified according to the 5 types mentioned above. For this, 118 events, with at least one station with daily snowfall depth greater than 20 cm, are selected. For the classification, synoptic weather charts, satellite images, and precipitation data are used. For TE and COM types, local sea-level pressure chart is also used to confirm the presence of condition for TE type (this is done for events in 1990 and thereafter). The classification shows that 109 out of 118 events can be classified as one of the 5 types. In the remaining 8 events, heavy snowfall occurred only in Ullung Island. Its occurrence may be due to one or more of the following mechanism: airmass transformation, mesoscale cyclones and/or mesoscale convergence over the East Sea, etc. Each type shows different characteristics in location of snowfall and composition of precipitation (i.e., dry snow, rain, and mixed precipitation). The AT-type snowfall occurs mostly in the west coast, Jeju and Ullung Islands whereas the TE-type snowfall occurs in the East coast especially over the Young Dong area. The ECS-type snowfall occurs mostly over the southern part of the peninsula and some east cost area (sometimes, whole south Korea depending on the location of cyclones). The EC- and COM-type snowfalls occur in wider area, often whole south Korea. Precipitation composition also varies with the type. The AT-type has a snow ratio (SR) higher than the mean value. The TE- and EC-type have SR similar to the mean. The ECS- and COM-type have SR values smaller than the mean. Generally the SR values at high latitude and mountainous areas are higher than those at the other areas. The SR value informs the characteristics of the precipitation composition. An SR value larger than 10 means that all precipitation is composed of snow whereas a zero SR value means that all precipitation is composed of rain.
동절기 공사시에는 낮은 외기온에 기인하여 콘크리트의 조기강도 발현이 취약하게 된다. 특히, 동절기 공사중, 외부의 절취면을 대상으로 Nail를 삽입함으로서 사면 전체를 일체화시키는 Soil Nailing 공법을 적용하는 경우에는 낮은 외기온에 기인한 Shotcrete의 강도발현에 많은 어려움이 있을 것으로 예상되고 있다. 따라서, 본 연구에서는 상기의 어려움을 해결할 목적으로, 시멘트 생산공정 중 부수적으로 발생되는 초미립자 시멘트(이하 미립자 시멘트라 칭함)를 이용하여 동절기 Shotcrete공사의 조기강도 발현성능을 확보하고자 하였다. 실험결과, 외기온이 최저 $-9^{\circ}C$의 극저온 조건이라 할지라도 미립자 시멘트를 100% 사용하면서, 간단한 비닐보양 양생을 실시한다면 약 5일 정도의 단기재령만으로도 설계기준강도를 만족하는 우수한 품질의 Shotcrete를 경제적으로 제조 할 수 있는 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.