• 제목/요약/키워드: Wearable robot

검색결과 129건 처리시간 0.029초

거울치료가 가능한 착용형 팔꿈치 재활로봇 (Wearable Elbow Rehabilitation Robot Capable of Mirror Therapy)

  • 양지훈;백진슬;문인혁
    • 재활복지공학회논문지
    • /
    • 제8권2호
    • /
    • pp.73-78
    • /
    • 2014
  • 이 논문은 팔꿈치 재활 훈련에 있어서 거울치료 기법을 적용한 착용형 재활로봇을 제안한다. 거울치료는 건측의 팔꿈치 동작을 측정하여, 환측의 팔꿈치 훈련을 하는 것이다. 이를 위해 환측의 재활을 위한 착용형 장치 뿐만 아니라 건측 팔꿈치 동작을 측정하기 위한 착용형 센서도 개발하였다. 착용형 장치는 인체의 팔꿈치 구조를 고려하여 설계하였다. 착용형 센서는 굽힘센서와 광파이버를 이용한 센서를 각각 개발하여 센터의 특성을 평가하였다. 개발된 거울치료형 팔꿈치 재활로봇은 피험자의 동작에 따른 동작특성을 3차원 모션 측정장치로 평가하였다. 실험의 결과는 이 연구에서 개발된 착용형 팔꿈치 재활로봇이 적용 가능함을 보였다.

  • PDF

생체신호에 기반한 웨어러블 로봇 내 부분 압박 바지 착용 시 효과 검증 (Verification of Effectiveness of Wearing Compression Pants in Wearable Robot Based on Bio-signals)

  • 박소영;이예진
    • 한국의류학회지
    • /
    • 제45권2호
    • /
    • pp.305-316
    • /
    • 2021
  • In this study, the effect of wearing functional compression pants is verified using a lower-limb wearable robot through a bio-signal analysis and subjective fit evaluation. First, the compression area to be applied to the functional compression pants is derived using the quad method for nine men in their 20s. Subsequently, functional compression pants are prepared, and changes in Electroencephalogram (EEG) and Electrocardiogram (ECG) signals when wearing the functional compression and normal regular pants inside a wearable robot are measured. The EEG and ECG signals are measured with eyes closed and open. Results indicate that the Relative alpha (RA) and Relative gamma wave (RG) of the EEG signal differ significantly, resulting in increased stability and reduced anxiety and stress when wearing the functional compression pants. Furthermore, the ECG analysis results indicate statistically significant differences in the Low frequency (LF)/High frequency (HF) index, which reflect the overall balance of the autonomic nervous system and can be interpreted as feeling comfortable and balanced when wearing the functional compression pants. Moreover, subjective sense is discovered to be effective in assessing wear fit, ease of movement, skin friction, and wear comfort when wearing the functional compression pants.

착용형 로봇을 제어하기 위한 근경도 기반의 의도 인식 방법 (Muscle Stiffness based Intent Recognition Method for Controlling Wearable Robot)

  • 최유나;김준식;이대훈;최영진
    • 로봇학회논문지
    • /
    • 제18권4호
    • /
    • pp.496-504
    • /
    • 2023
  • This paper recognizes the motion intention of the wearer using a muscle stiffness sensor and proposes a control system for a wearable robot based on this. The proposed system recognizes the onset time of the motion using sensor data, determines the assistance mode, and provides assistive torque to the hip flexion/extension motion of the wearer through the generated reference trajectory according to the determined mode. The onset time of motion was detected using the CUSUM algorithm from the muscle stiffness sensor, and by comparing the detection results of the onset time with the EMG sensor and IMU, it verified its applicability as an input device for recognizing the intention of the wearer before motion. In addition, the stability of the proposed method was confirmed by comparing the results detected according to the walking speed of two subjects (1 male and 1 female). Based on these results, the assistance mode (gait assistance mode and muscle strengthening mode) was determined based on the detection results of onset time, and a reference trajectory was generated through cubic spline interpolation according to the determined assistance mode. And, the practicality of the proposed system was also confirmed by applying it to an actual wearable robot.

유연한 착용형 손 로봇 기술 동향 (Trend of Soft Wearable Robotic Hand)

  • 인현기;정우석;강병현;이해민;구인욱;조규진
    • 제어로봇시스템학회논문지
    • /
    • 제21권6호
    • /
    • pp.531-537
    • /
    • 2015
  • Hand function is one of the essential functions required to perform the activities of daily living, and wearable robots that assist or recover hand functions have been consistently developed. Previously, wearable robots commonly employed conventional robotic technology such as linkage which consists of rigid links and pin joints. Recently, as the interest in soft robotics has increased, many attempts to develop a wearable robot with a soft structure have been made and are in progress in order to reduce size and weight. This paper presents the concept of a soft wearable robot composed of a soft structure by comparing it with conventional wearable robots. After that, currently developed soft wearable robots and related issues are introduced.