• Title/Summary/Keyword: Wearable electronic devices

Search Result 123, Processing Time 0.03 seconds

Fiber Based Supercapacitors for Wearable Application (웨어러블 응용을 위한 섬유형 슈퍼커패시터)

  • Jae Myeong Lee;Wonkyeong Son;Juwan Kim;Jun Ho Noh;Myoungeun Oh;Jin Hyeong Choi;Changsoon Choi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.303-325
    • /
    • 2023
  • Flexible fiber- or yarn-based one-dimensional (1-D) energy storage devices are essential for developing wearable electronics and have thus attracted considerable attention in various fields including ubiquitous healthcare (U-healthcare) systems and textile platforms. 1-D supercapacitors (SCs), in particular, are recognized as one of the most promising candidates to power wearable electronics due to their unique energy storage and high adaptability for the human body. They can be woven into textiles or effectively designed into diverse architectures for practical use in day-to-day life. This review summarizes recent important development and advances in fiber-based supercapacitors, concerning the active materials, fiber configuration, and applications. Active materials intended to enhance energy storage capability including carbon nanomaterials, metal oxides, and conductive polymers, are first discussed. With their loading methods for fiber electrodes, a summary of the four main types of fiber SCs (e.g., coil, supercoil, buckle, and hybrid structures) is then provided, followed by demonstrations of some practical applications including wearability and power supplies. Finally, the current challenges and perspectives in this field are made for future works.

3D-Porous Structured Piezoelectric Strain Sensors Based on PVDF Nanocomposites (PVDF 나노 복합체 기반 3차원 다공성 압전 응력 센서)

  • Kim, Jeong Hyeon;Kim, Hyunseung;Jeong, Chang Kyu;Lee, Han Eol
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.307-311
    • /
    • 2022
  • With the development of Internet of Things (IoT) technologies, numerous people worldwide connect with various electronic devices via Human-Machine Interfaces (HMIs). Considering that HMIs are a new concept of dynamic interactions, wearable electronics have been highlighted owing to their lightweight, flexibility, stretchability, and attachability. In particular, wearable strain sensors have been applied to a multitude of practical applications (e.g., fitness and healthcare) by conformally attaching such devices to the human skin. However, the stretchable elastomer in a wearable sensor has an intrinsic stretching limitation; therefore, structural advances of wearable sensors are required to develop practical applications of wearable sensors. In this study, we demonstrated a 3-dimensional (3D), porous, and piezoelectric strain sensor for sensing body movements. More specifically, the device was fabricated by mixing polydimethylsiloxane (PDMS) and polyvinylidene fluoride nanoparticles (PVDF NPs) as the matrix and piezoelectric materials of the strain sensor. The porous structure of the strain sensor was formed by a sugar cube-based 3D template. Additionally, mixing methods of PVDF piezoelectric NPs were optimized to enhance the device sensitivity. Finally, it is verified that the developed strain sensor could be directly attached onto the finger joint to sense its movements.

Wearable antenna for Body area Network

  • Lim, Eng Gee;Wang, Zhao;Lee, Sanghyuk
    • Journal of Convergence Society for SMB
    • /
    • v.3 no.2
    • /
    • pp.27-32
    • /
    • 2013
  • Wireless Body Area Networks (WBAN) have been made possible by the emergence of small and lightweight wireless systems such as Bluetooth, enabled devices and PDAs. Antennas are an essential part of any WBAN system and due to various technical requirements and physical constraints, careful consideration of their design and deployment is needed. This paper is proposing on the design of wearable antenna as parts of clothing to serve communications functions, such as tracking and navigation in health care applications. The substrates of the wearable antennas will be made from textile materials and since it is wearable, it should have a small size, be light weight, low maintenance, and unobtrusive. This proposed paper will also investigate the influence of different parameters for wearable antenna including types of textile/substrate to ensure that the antenna design satisfies WBAN requirements. The characteristics and behavior of the antenna need to adhere to specifications set by wireless standards and system technology requirements. This means that the transmitting and receiving frequency bands of the various units need to be chosen accordingly. Since there are restrictions on the level of power to which the human body can be exposed to, the antenna as well as other RF system components must be designed to meet these restrictions. Antenna gain, which directly affects power transmitted, is a critical parameter in ensuring power levels fall within the safety guidelines and so will be of primary importance in the design. The electromagnetic interaction between WBAN antennas and devices and the human body will also be explored.

  • PDF

Recent Progress in Flexible Energy Harvesting Devices based on Piezoelectric Nanomaterials (압전나노소재 기반의 플렉서블 에너지 하베스팅 소자 연구동향)

  • Park, Kwi-Il
    • Journal of Powder Materials
    • /
    • v.25 no.3
    • /
    • pp.263-272
    • /
    • 2018
  • Recent developments in the field of energy harvesting technology that convert ambient energy resources into electricity enable the use of self-powered energy systems in wearable and portable electronic devices without the need for additional external power sources. In particular, piezoelectric-effect-based flexible energy harvesters have drawn much attention because they can guarantee power generation from ubiquitous mechanical and vibrational movements. In response to demand for sustainable, permanent, and remote use of real-life personal electronics, many research groups have investigated flexible piezoelectric energy harvesters (f-PEHs) that employ nanoscaled piezoelectric materials such as nanowires, nanoparticles, nanofibers, and nanotubes. In those attempts, they have proven the feasibility of energy harvesting from tiny periodic mechanical deformations and energy utilization of f-PEH in commercial electronic devices. This review paper provides a brief overview of f-PEH devices based on piezoelectric nanomaterials and summarizes the development history, output performance, and applications.

Next-Generation Biomedical Devices via MicroLEDs (마이크로LED를 응용한 차세대 생체 치료 소자 개발)

  • Lee, Han Eol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.4
    • /
    • pp.221-228
    • /
    • 2021
  • With the advent of the IoT (internet of things) era, there has been discussion on how to efficiently use various information from daily life. In academic and industrial society, various smart devices such as smart watches, smart phones, and smart glasses have been developed and commercialized for narrowing the physical/psychological distance with user information. According to recent developments of smart devices, the contemporary people have desired to check their body information and treat disease by themselves. According to the needs of the time, biological researches by phototherapy/monitoring have been actively conducted. Among various light sources, microLEDs have been spotlighted due to their superior optoelectric properties and stability. In this paper, we would like to review the state-of-the research results on the next-generation biological therapy devices via microLEDs.

Fabrication of triboelectric nanogenerator for self-sufficient power source application (자가발전활용을 위한 마찰전기 나노발전소자의 제작)

  • Shin, S.Y.;Kim, S.J.;Saravanakumar, Balasubramaniam
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.589-590
    • /
    • 2013
  • The fast development of electronic devices towards wireless, portable and multi-functionality desperately needs the self-powered and low maintenance power sources. The possibility to coupling the nanogenerator to wearable and portable electronic device facilitates the self powered device with independent and self sustained power source. Nanogenerator has ability to convert the low frequency mechanical vibration to electrical energy which is utilized to drive the electronic device [1]. The self powered power source has the ability to generate the power from environment and human activity has attracted much interest because of place and time independent. The human body motion based energy harvesting has created huge impact for future self powered electronics device applications. The power generated from the human body motion is enough to operate the future electronic devices. The energy harvesting from human body motion based on triboelectric effect has simple, cost-effective method [2, 3] and meet the required power density of devices. However, its output is still insufficient to driving electronic devices in continues manner so new technology and new device architecture required to meet required power. In the present work, we have fabricated the triboelectric nanogenerator using PDMS polymer. We have studied detail about the power output of the device with respect to different polymer thickness and varied separation distance.

  • PDF

Development of Wearable Device for Hearing Impaired people Using Arduino

  • Jeon, An-Gyoon;Jeong, Dong-won;Lee, Sang-Hyun
    • International journal of advanced smart convergence
    • /
    • v.8 no.4
    • /
    • pp.214-220
    • /
    • 2019
  • Hearing impaired people are apt to be in danger because they can't detect danger with sound. Hearing impaired people have less risk-detection ability than non-disabled people because of lack of hearing. There are many devices to help the hearing impaired, such as hearing aids. A hearing aids can be helpful, but it may not be available depending on the degree or type of hearing loss for example, to the hearing-impaired people with little remaining hearing of high frequencies, ordinary hearing aids are not very useful for understanding the high frequency consonants and it requires a high cost, from thousands to tens of thousands of dollars. Also, it is difficult for the underprivileged, such as the low-income bracket and the elderly, to use them because they are difficult to manage. Therefore, this paper describes the development of low-cost wearable device to assistant a hearing-impaired people using Arduino. Also, it accepts values from switches or sensors and can control external electronic devices such as LEDs and motors to create objects that can interact with the environment. In this is paper, through sound sensors, the ambient sound was taken as an analogue value and transmitted to the aduino board, and the vibration motor was operated when the noise was generated, so that the user could be aware of the occurrence of danger.

A Study on the Effect of the Digital Nomadism on Modern Fashion

  • Kim Mi-Hyun;Chung Heung-Sook Grace
    • International Journal of Costume and Fashion
    • /
    • v.4 no.2
    • /
    • pp.45-55
    • /
    • 2004
  • Rapid informatization and technology advance in the 21st century has invited a new paradigm and changed many things in human life pattern. The impact of mobility seen in this digital nomadism has brought about, when it comes to clothing, a change in its unique meaning, that is, the graftage of high technology onto present nomad's life style who live moving around all the time due to the expansion of mobile environment. As the fruits of this expansion of mobile environment and technology advance in wireless telecommunication, easy-to-carry smaller sized devices such as cell phones, PDA, and MP3 players represent the present times, while the future would be an 'era of wearing' in which kinds of electronic devices and systems are integrated into clothing. Thus in this study, concept of wearable computer seen in the 21st century's digital nomadism was reviewed, and figurativeness and anesthetic value of wearable computer were discussed in association with the change in high style image resulted from technology advance and change of life style. By drawing a justice from which, value of future fashion was also prospected.

Development of an oneM2M-compliant IoT Platform for Wearable Data Collection

  • Ahn, Il Yeup;Sung, Nak-Myoung;Lim, Jae-Hyun;Seo, Jeongwook;Yun, Il Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.1-15
    • /
    • 2019
  • Internet of Things (IoT) is commonly referred to as a future internet technology to provide advanced services by interconnecting physical and virtual things, collecting and using many data from them. The IoT platform is a server platform with a common architecture to collect and share the data independent of the IoT devices and services. Recently, oneM2M, the global standards initiative for Machine-to-Machine (M2M) communications and the IoT announced the availability of oneM2M Release 2 specifications. Accordingly, this paper presents a new oneM2M-compliant IoT platform called Mobius 2.0 and proposes its application to collect the biosignal data from wearable IoT devices for emotion recognition. Experimental results show that we can collect various biosignal data seamlessly and extract meaningful features from the biosignal data to recognize two emotions of joy and sadness.

Real Time ECG Monitoring Through a Wearable Smart T-shirt

  • Mathias, Dakurah Naangmenkpeong;Kim, Sung-Il;Park, Jae-Soon;Joung, Yeun-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.1
    • /
    • pp.16-19
    • /
    • 2015
  • A wearable sensing ECG T-shirt for ubiquitous vital signs sensing is proposed. The sensor system consists of a signal processing board and capacitive sensing electrodes which together enable measurement of an electrocardiogram (ECG) on the human chest with minimal discomfort. The capacitive sensing method was employed to prevent direct ECG measurement on the skin and also to provide maximum convenience to the user. Also, low power integrated circuits (ICs) and passive electrodes were employed in this research to reduce the power consumption of the entire system. Small flexible electrodes were placed into cotton pockets and affixed to the interior of a worn tight NIKE Pro combat T-shirt. Appropriate signal conditioning and processing were implemented to remove motion artifacts. The entire system was portable and consumed low power compared to conventional ECG devices. The ECG signal obtained from a 24 yr. old male was comparable to that of an ECG simulator.