• Title/Summary/Keyword: Wearable computing

Search Result 147, Processing Time 0.027 seconds

Development of A Wearable Input Device Recognizing Human Hand and Finger Motions as A New Mobile Input Device

  • Dae H. Won;Lee, Ho G.;Kim, Jin-Y;Park, Jong H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.153.3-153
    • /
    • 2001
  • Recently, the researches on the mobile computing technologies for palm computers, PDA´s and wearable computers became very active. In the development of mobile devices, one of the key technologies is the human interface. So, this paper suggests a new input device for PDA´s and wearable computers so-called key-glove. The design methods of key-glove are discussed in this paper and we manufactured the key-glove which recognizes that character is typed in though the hand´s movements analysis and is designed as an input device for wearable computers and virtual environment. Also, we are executes a performance test for alphanumeric data entry, command entry and X-Y pointer input. In the results, we are confirmed in its ...

  • PDF

Energy-Efficient Approximate Speech Signal Processing for Wearable Devices

  • Park, Taejoon;Shin, Kyoosik;Kim, Nam Sung
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.145-150
    • /
    • 2017
  • As wearable devices are powered by batteries, they need to consume as little energy as possible. To address this challenge, in this article, we propose a synergistic technique for energy-efficient approximate speech signal processing (ASSP) for wearable devices. More specifically, to enable the efficient trade-off between energy consumption and sound quality, we synergistically integrate an approximate multiplier and a successive approximate register analog-to-digital converter using our enhanced conversion algorithm. The proposed ASSP technique provides ~40% lower energy consumption with ~5% higher sound quality than a traditional one that optimizes only the bit width of SSP.

A Study on Wearable Computing Prospect in Digital Convergence (디지털 컨버전스에서의 웨어러블 컴퓨팅 발전방향에 관한 연구)

  • Lee, Seong-Hoon
    • Journal of Digital Convergence
    • /
    • v.11 no.10
    • /
    • pp.431-435
    • /
    • 2013
  • In information society, Convergence was combined with a word 'digital'. Digital convergence means a service or new product which appeared through fusion of unit technologies in information and communication regions. The effects of convergence technologies and social phenomenons are visualized in overall regions of society such as economy, society, culture, etc. In this paper, we described a prospects and technologies needed in digital convergence environment. And we described a wearable computer which was leading case in digital convergence.

Implementation of back propagation algorithm for wearable devices using FPGA (FPGA를 이용한 웨어러블 디바이스를 위한 역전파 알고리즘 구현)

  • Choi, Hyun-Sik
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.2
    • /
    • pp.7-16
    • /
    • 2019
  • Neural networks can be implemented in variety of ways, and specialized chips is being developed for hardware improvement. In order to apply such neural networks to wearable devices, the compactness and the low power operation are essential. In this point of view, a suitable implementation method is a digital circuit design using field programmable gate array (FPGA). To implement this system, the learning algorithm which takes up a large part in neural networks must be implemented within FPGA for better performance. In this paper, a back propagation algorithm among various learning algorithms is implemented using FPGA, and this neural network is verified by OR gate operation. In addition, it is confirmed that this neural network can be used to analyze various users' bio signal measurement results by learning algorithm.

Developments of Glove-based Input Device. (장갑형 입력장치의 개발)

  • 원대희;이호길;김진영;박종현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.211-216
    • /
    • 2001
  • Recently, the research for the mobile computing such as PDA, Palm PC and wearable computing related technologies is widely under development, specially for the input device. Among the mobile input methods are speech recognition, handwriting recognition and cording type. However these systems have the problems of the data input appraratus like input speed and recognition rate. This paper presents the Glove-based input device which could solve the system's data input problem. By the experimental results suggest the method of proposional input method that utilize the hand's movement is appropriate for the effective mobile input devices.

  • PDF

Analysis of Scenario and Story Representational Structure for Story-based Content Creation (스토리 기반 콘텐츠 제작을 위한 시나리오 분석 및 스토리 표현 구조)

  • Lee, Hyejoo;Lee, Suk-Hwan;Kwon, Ki-Ryong;Park, Yun Kyoung;Park, Kyoung Deok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1553-1554
    • /
    • 2015
  • 웹 상에 축척된 방대한 콘텐츠를 활용하기 위해 사용자가 입력한 스토리에 맞는 콘텐츠를 검색하고 제공하여 사용자가 자유로이 콘텐츠를 제작할 수 있는 서비스를 제공하고자 하는 경우, 컴퓨터가 이해 가능한 구조로 스토리를 입력할 수 있어야 한다. 본 논문에서는 영화, 드라마와 같은 영상물을 제작하기 위한 기초가 되는 시나리오(Scenario)를 분석하여 스토리 표현 구조를 제안한다.

An Android BLE Emulator for Developing Wearable Apps (웨어러블 어플리케이션 개발을 위한 안드로이드 BLE 에뮬레이터)

  • Moon, Hyeonah;Park, Sooyong;Choi, Kwanghoon
    • KIISE Transactions on Computing Practices
    • /
    • v.24 no.2
    • /
    • pp.67-76
    • /
    • 2018
  • BLE (Bluetooth Low Energy) has been extensively used for communication between mobile applications and wearable devices in IoT (Internet of Things). In developing Android applications, wearable devices, on which the applications can run, should be available because the existing Android SDK does not support any BLE emulation facility. In this study, we have designed and implemented the first Android BLE emulator. Using this, we are able to develop and test BLE-based Android applications even when without wearable devices. We have also proposed an automatic generation method of Android BLE scenarios based on graph model. We have shown that the method is useful for systematically testing BLE application protocols by running the generated scenarios on the Android BLE emulator.

Quality Assessment Model for Practical Wearable Computers (실용적 웨어러블 컴퓨터 품질평가모델)

  • Oh, Cheon-Seok;Choi, Jae-Hyun;Kim, Jong-Bae;Park, Jea-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.12
    • /
    • pp.842-855
    • /
    • 2014
  • Recently, the progress of smart phone market has retarded by oversupply therefore wearable computer has been the focus of new growth engine. Wearable computing system is a complex fusion of a variety of technologies such as wireless network, embedded, sensor and new material. Because these technologies involves utilization and mobility in addition to quality characteristic in existing software, application of ISO/IEC 9126 is not perfect when assessing quality of wearable computer. In this study, author suggested new quality assessment model for wearable computer by sorting quality attribute in ISO/IEC 9126 and adding new quality attribute. For this, author investigated features and functional requirements related to wearable computer. and then author suggested quality standard and metrics by identifying quality characteristic. Author confirmed practicality of quality assessment model by using suggested model in scenario and comparing quality assessment of three goods such as company S, L, G. This quality assessment model is expected to use guidelines for assessing quality of wearable computer.

A Research for Removing ECG Noise and Transmitting 1-channel of 3-axis Accelerometer Signal in Wearable Sensor Node Based on WSN (무선센서네트워크 기반의 웨어러블 센서노드에서 3축 가속도 신호의 단채널 전송과 심전도 노이즈 제거에 대한 연구)

  • Lee, Seung-Chul;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.137-144
    • /
    • 2011
  • Wireless sensor network(WSN) has the potential to greatly effect many aspects of u-healthcare. By outfitting the potential with WSN, wearable sensor node can collects real-time data on physiological status and transmits through base station to server PC. However, there is a significant gap between WSN and healthcare. WSN has the limited resource about computing capability and data transmission according to bio-sensor sampling rates and channels to apply healthcare system. If a wearable node transmits ECG and accelerometer data of 4 channel sampled at 100 Hz, these data may occur high loss packets for transmitting human activity and ECG to server PC. Therefore current wearable sensor nodes have to solve above mentioned problems to be suited for u-healthcare system. Most WSN based activity and ECG monitoring system have been implemented some algorithms which are applied for signal vector magnitude(SVM) algorithm and ECG noise algorithm in server PC. In this paper, A wearable sensor node using integrated ECG and 3-axial accelerometer based on wireless sensor network is designed and developed. It can form multi-hop network with relay nodes to extend network range in WSN. Our wearable nodes can transmit 1-channel activity data processed activity classification data vector using SVM algorithm to 3-channel accelerometer data. ECG signals are contaminated with high frequency noise such as power line interference and muscle artifact. Our wearable sensor nodes can remove high frequency noise to clear original ECG signal for healthcare monitoring.

A Novel System with EMG-controlled FES Enhanced Gait Function and Energy Expenditure for Older Adults

  • Jang-hoon Shin;Hye-Kang Park;Joonyoung Jung;Dong-Woo Lee;Hyung cheol Shin;Hwang-Jae Lee;Wan-hee Lee
    • Physical Therapy Rehabilitation Science
    • /
    • v.13 no.2
    • /
    • pp.152-162
    • /
    • 2024
  • Objective: This study was conducted to analyze the effect of wearable Electromyography-controlled functional electrical stimulation (EMG-controlled FES) System on Gait Function and cardiopulmonary metabolic efficiency during walking in older adults. Design: Cross-section study Methods: Total 22 older adult participants suitable to selection criteria of this study participated in this study. The EMG-controlled FES System, which functions as a wearable physical activity assist FES system was used. All participations performed randomly assigned two conditions (Non-FES assist [NFA], FES assist [FA]) of walking. In all conditions, spatio-temporal parameters and kinematics and kinetics parameters during walking was collected via 3D motion capture system and 6 minutes walking test (6MWT) and metabolic cost during walking and stairs climbing was collected via a portable metabolic device (COSMED K5, COSMED Srl, Roma, Italy). Results: In Spatio-temporal parameters aspects, The EMG-controlled FES system significantly improved gait functions measurements of older adults with sarcopenia at walking in comparison to the NFA condition (P<0.05). Hip, knee and ankle joint range of motion increased at walking in FA condition compared to the NFA condition (P<0.05). In the FA condition, moment and ground reaction force was changed like normal gait during walking of older adults in comparison to the NFA condition (P<0.05). The EMG-controlled FES system significantly reduced net cardiopulmonary metabolic energy cost, net energy expenditure measurement at stairs climbing (P<0.05). Conclusions: This study demonstrated that EMG-controlled FES is a potentially useful gait-assist system for improving gait function by making joint range of motion and moment properly.