• Title/Summary/Keyword: Wearable Tactile Display

Search Result 4, Processing Time 0.031 seconds

Wearable Tactile Display Based on Soft Actuator (유연한 구동기를 이용한 착용 가능한 촉각 제시 장치 개발)

  • Koo, Ig-Mo;Jung, Kwang-Mok;Park, Jong-Kil;Koo, Ja-Choon;Lee, Young-Kwan;Nam, Jae-Do;Choi, Hyouk-Ryeol
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.1
    • /
    • pp.89-101
    • /
    • 2006
  • Tactile sensation is one of the most important sensory functions for human perception of objects. Recently, there have been many technical challenges in the field of tactile display as well as tactile sensing. In this paper, we propose an innovative tactile display device based on soft actuator technology with ElectroActive Polymer(EAP). This device offers advantageous features over existing devices with respect to intrinsic flexibility, softness, ease of fabrication and miniaturization, high power density, and cost effectiveness. In particular, it can be adapted to various geometric configurations because it possesses structural flexibility, so it can be worn on any part of the human body such as finger, palm, and arm etc. It can be extensively applied as a wearable tactile display, a Braille device for the visually disabled, and a human interface in the future. A new design of the flexible actuator is proposed and its basic operational principles are discussed. In addition, a wearable tactile display device with $4{\times}5$ actuator array(20 actuator cells) is developed and its effectiveness is confirmed.

  • PDF

Vibrotactile Glove Mouse (진동촉각 글러브 마우스)

  • Park, Jun-Hyung;Jeong, Ju-Seok;Jang, Tae-Jeong
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.741-744
    • /
    • 2009
  • In this paper, We introduce the glove mouse using a Gyroscope, acceleration sensor, Pin-type Viboratctile Display Device and USB HID. The device recognize a user's wrist by Gyroscope and acceleration sensor in the glove and transmit the data to USB dongle which is recognized the manufactured mouse by Blutooth. Also, using a special application, We transmit the tactile information to user through the Pin-type Vibrotactile Display. We implement wearable system in the glove except USB device. If user want to use general spatial mouse, we recognize mouse USB dongle only without another application. If user want to feel the tactile sensationn, we can use by connecting PC serial communication port to USB dongle.

  • PDF

Development of a Wearable Vibrotactile Display Device (착용 가능한 진동촉감 제시 장치 개발)

  • Seo, Chang-Hoon;Kim, Hyun-Ho;Lee, Jun-Hun;Lee, Beom-Chan;Ryu, Je-Ha
    • Journal of the HCI Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.29-36
    • /
    • 2006
  • Tactile displays can provide useful information without disturbing others and are particularly useful for people with visual or auditory impairments. They can also complement other displays. In this paper, we present a new vibrotactile display device for wearable, mobile, and ubiquitous computing environments. The proposed vibrotactile device has a $5{\times}5$ array configuration for displaying complex information such as letters, numbers, and haptic patterns as well as simple directional ques and situation awareness alarms. Commercially available coin-type vibration motors are embedded vertically in flexible mounting pads in order to best localize vibrations on the skin. An embedded microprocessor controls the motors sequentially with an advanced tracing mode to increase recognition rate. User studies with the vibrotactile device on the top of the foot show 86.7% recognition rate for alphabet characters after some training. In addition, applying vibrotactile device to driving situation shows 83.9% recognition rate. We also propose some potentially useful application scenarios including Caller Identification for mobile phones and Navigation Aids for GPS systems while driving.

  • PDF

Simulation and measurement: Feasibility study of Tactile Internet applications for mmWave virtual reality

  • Na, Woongsoo;Dao, Nhu-Ngoc;Kim, Joongheon;Ryu, Eun-Seok;Cho, Sungrae
    • ETRI Journal
    • /
    • v.42 no.2
    • /
    • pp.163-174
    • /
    • 2020
  • Numerous wearable technology companies have recently developed several headmounted display (HMD) products for virtual reality (VR) services. 5G wireless networks aim at providing high-quality 3D multimedia services such as VR, augmented reality, and mixed reality. In this study, we examine the application of millimeter-wave (mmWave) technology to realize low-latency wireless communication between an HMD and its content server. However, the propagation characteristics of mmWave present several challenges such as the deafness, blockage, and beam alignment problems, and interference among content servers. In this study, we focus on an environment that provides VR services in the mmWave band and introduce existing techniques for addressing such challenges. In addition, we employ a commercialized IEEE 802.11ad VR dongle to measure the actual data rate of an mmWave VR application and identify the degree to which the performance deteriorates when the above problems occur. Finally, we verify the feasibility of the proposed solutions through a simulation of several VR scenarios in the mmWave band.