• 제목/요약/키워드: Wear properties

검색결과 1,343건 처리시간 0.027초

용사피막의 마찰.마모 특성 평가에 관한 연구 (A Study on the Evaluation of the Friction and Wear Properties of the Sprayed Coating Layer)

  • 김영식;김윤해;김종호;최영국;강태영
    • Journal of Welding and Joining
    • /
    • 제14권3호
    • /
    • pp.66-74
    • /
    • 1996
  • In this study, friction and wear properties of flame sprayed specimens and hard Cr plating specimens were tested, and their properties were compared each other in dry and lubrication condition. Ni-Cr powder and steel powder were used as the spray powder and sprayed on the steel(S45C) substrate by flame sprayed method. Each wear surface was observed with SEM after friction and wear test. The friction coefficient of the as-forged steel specimens was the highest among surface treatment specimens, and the other specimens appeared in order as follows ; hard Cr-plating specimens, Ni-Cr powder sprayed specimens, steel powder sprayed specimens. Comparing the wear volumes in dry condition, as forged steel specimens appeared the greatest wear volume, and the other specimens appeared wear volume in order as follows ; Ni-Cr powder sprayed specimens, steel powder sprayed specimens, hard Cr plating specimens. In friction and wear test, the hard Cr plating specimens were worn by the abrasive phenomenon, involving the cracks. The wear volume of steel powder sprayed specimens was lower than that of Ni-Cr powder sprayed specimens. Comparing the tensile strength of both sprayed coating layers, the steel powder sprayed coating layer was better than Ni-Cr powder sprayed coating layer.

  • PDF

질소이온주입에 따른 생체안전성 티타늄 임플란트의 마모특성 (Wear Properties of Biocompatible Ti Implant due to Nitrogen Ion Implantation)

  • 최종운;손선희;변응선;정용수
    • 한국안전학회지
    • /
    • 제14권4호
    • /
    • pp.126-134
    • /
    • 1999
  • In this study, plasma source ion implantation was used to improve the wear properties of biocompatible titanium implant. In order to observe the effect of ion energy and dose on wear property of titanium implant, pin-on-disk type wear tests in Hank's solution were carried out. The friction coefficient of ion implanted specimens were increased from 0.47 to 0.65 under high energy and ion dose conditions. As increasing ion energy and ion dose, the amount of wear was reduced.

  • PDF

인공고관절 모사조건하에서의 탄소섬유 복합재료의 마찰 및 마모 특성 (Friction and wear properties of carbon fiber reinforced epoxy composite for the artificial hip joint application)

  • 송영석;윤재륜
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.239-241
    • /
    • 1999
  • Recently, the friction and wear behaviors of UHMWPE, ceramic and metal is being researched actively for the use as an artificial hip-joint. In this study, because of good wear properties of carbon fiber, we made experiments about the friction and wear of carbon fiber reinforced epoxy composite under the lubricative and the dry condition. The possibilities of carbon-carbon composite for the artificial hip joint application was studied from this results.

  • PDF

Tribological properties of DLC films on polymers

  • Hashizume, T.;Miyake, S.;Watanabe, S.;Sato, M.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.175-176
    • /
    • 2002
  • Our study is to search for tribological properties of diamond-like carbon (DLC) films as known as anti- wear hard thin film on various polymers. This report deals with the deposition of DLC films on various polymer substrates in vacuum by magnetron radio frequency (RF) sputtering method with using argon plasma and graphite, titanium target. The properties of friction and wear are measured using a ball-on-disk wear -testing machine. The properties of friction and wear have been remarkably improved by DLC coating. Moreover the composition of DLC films has been analyzed by using auger electron spectroscopy(AES). The wear rate of titanium-containing DLC film is lower than that of no-metal-containing DLC film.

  • PDF

자동차 부품용 과공정 알루미늄 합금의 기계적 특성 (Mechanical Properties of Hyper-Eutectic Aluminum Alloys for Automobile Parts)

  • 배철홍;김종명
    • 한국자동차공학회논문집
    • /
    • 제18권1호
    • /
    • pp.120-126
    • /
    • 2010
  • It was known that the excellent wear resistance of hyper eutectic aluminum alloy is based on the primary Si particles which are distributed in the base metal. When the primary Si volume fraction increases, the smaller size have excellent wear resistance characteristics. However, this trend always does not match. There is no investigation result based on the materials and methods for real using parts. In this study, using the automotive parts manufacturer currently in use hyper eutectic Al alloy tensile test specimen type sample was fabricated by 350Ton high pressure die-casting machine. Then, fluidity, tensile, impact and wear resistance properties were evaluated. If the casting quality, primary Si size, fraction and distribution are similar, mechanical properties and wear resistance are equivalent.

강제교반법으로 제조된 Al-Pb계 베어링 합금의 마모특성 (Wear properties of Al-Pb alloys produced by a forced stirring method)

  • 임화영;허무영;임대순
    • Tribology and Lubricants
    • /
    • 제8권1호
    • /
    • pp.70-77
    • /
    • 1992
  • Al-Pb-Si bearing alloys were produced by a forced stirring method and a rapid solidification process to study wear properties of bearing alloys. A homogeneous distribution of Pb particles in Al matrix could be obtained by means of the forced stirring and the rapid cooling during the casting. The wear properties of bearing alloys were tested by a pin-on-disc wear tester. The change in microstructure according to the alloy manufacturing variables was observed by the backscattered electron images. Al-Pb and Al-Si binary alloys showed a transition from mild to severe wear. The transition was not found in Al-Pb-Si ternary alloys. It could be concluded that the lubricatioin effect of Pb and the strengthening effect of Si in the ternary alloys enhanced the bearing properties. A Al-25%Pb-13%Si alloy showed the lowest coefficient of friction in this experiment. It indicated that the optimum concentration of alloy was 25% Pb and 13% Si when the forced stirring of melt and water-cooled-copper-mold solidification were adopted.

습도 및 미끄럼 속도에 따른 질화규소의 마찰 마모 특성에 관한 연구 (Effects of Humidity and Sliding Speed on the Wear Properties of $Si_3N_4$ Ceramics)

  • 이기현;김경웅
    • Tribology and Lubricants
    • /
    • 제9권2호
    • /
    • pp.63-69
    • /
    • 1993
  • The wear properties of two types of $Si_3N_4$(silicon nitride) exposed to high and low humidity were examined experimentally for various sliding speed. Bearing steel was used as the disk material at pin-on-disk type sliding. Wear rates of pressureless sintered-plus-hot-isostatic pressed Si3N4 were slightly lower than those of pressureless sintered $Si_3N_4$. It was observed that adsorbed moisture and sliding speed markedly influenced the wear properties of $Si_3N_4$. The highest wear rate was obtained under the high humidity and low sliding speed condition. As the sliding speed was increased, wear rates were decreased and the humidity effect on the wear rates of $Si_3N_4$ was lowered. The result that the $Si_3N_4$ pin showed a high wear rate under the high humidity condition was explained by the property change due to the adsorbed moisture, plowing action by the hard particles of $Fe_2O_3$ from the disk, and the corrosion effect at $Si_3N_4$ surface. Increase in sliding speed was supposed to have reduced the humidity effect on wear rate of $Si_3N_4$ by raising the temperature of both the bearing steel disk and $Si_3N_4$ pin specimen.

축구경기장 토양의 물리적 특성과 잔디 마모특성 - 2002년 월드컵 인천경기장 모형돔을 대상으로 - (Physical Properties of Soil and Turfgrass Wear Characteristics of Soccer Fields - A Simulation of the Inchon 2002 World Cup Stadium -)

  • 심상렬;정대영
    • 한국조경학회지
    • /
    • 제30권1호
    • /
    • pp.96-104
    • /
    • 2002
  • This study was conducted to investigate physical properties of soil and turfgrass wear characteristics within turfgrasses inside or outside the stadium A 1/1000 scale model Inchon world cup soccer d[me was constructed for this test. Turfgrasses planted inside and outside the model dome were; Kentucky bluegrass(KB), Kentucky bluegrass + perennial ryegrass mixture (KB+PR), Kentucky bluegrass + tall fescue + perennial ryegrass mixture (KB+TF+PR), Zoysia japonica 'Anyangjungzii'(ZA) and Zoysia japonica 'Zenith\`(ZZ). The rootzone was constructed by the multi-layer method (United States Golf Association method). Traffic on turfgrasses was treated with a 120kg roller. Surface soil hardness, soil penetration and water infiltration values on cool-season grasses(KB, KB+PR, KB+TF+PR) was found to be better for soccer play compared to zoysiagrasses(ZA, ZZ). No big differences in surface soil hardness, soil penetration and water infiltration values were found between inside and outside of the model dome. Wear damage on cool-season grasses caused by the traffic treatment was low compared to zoysiagrasses. However, there was no difference in wear damage by the traffic treatment within cool-season grasses while wear damage on ZA was higher than on ZZ within zoysiagrasses. It could be concluded that physical properties and wear characteristics on cool-season grasses were much better for soccer play than on zoysiagrasses.

Sliding Wear of Alumina-silicon Carbide Nanocomposites

  • Kim, Seung-Ho;Lee, Soo-Wohn;Kim, Yun-Ho;Riu, Doh-Hyung;Tohru Sekino;Koichi Niihara
    • 한국세라믹학회지
    • /
    • 제38권12호
    • /
    • pp.1080-1084
    • /
    • 2001
  • Alumina-based nanocomposites have improved mechanical properties such as hardness, fracture toughness and fracture strength compared to monolithic ceramics. In this study, alumina with 5 vol% of nanosized SiC was sintered by a hot pressing technique at 1600$\^{C}$, 30 MPa for 1h in an argon gas atmosphere. Microstructures and mechanical properties in alumina-SiC nanocomposite were investigated. Moreover, tribological properties in air and water were compared each other. Relationships of wear properties with mechanical properties such as hardness, strength, and fracture toughness as well as microstructure were studied. Based on experimental results it was found that nanosized SiC retarded grain growth of matrix alumina. Mechanical properties such as hardness, fracture toughness and strength were improved by the addition of nanosized SiC in alumina. Improved mechanical properties resulted in increased sliding wear resistance. Tribological behavior of nanocomposites in water seemed to be governed by abrasive wear.

  • PDF

순수금속의 재료물성치와 마찰.마멸특성에 대한 연구 (The Effects of Relative Material Properties on the Friction and Wear Behavior of Pure Metals)

  • 황동환;성인하;김대은
    • Tribology and Lubricants
    • /
    • 제14권2호
    • /
    • pp.10-20
    • /
    • 1998
  • In this paper, the effects of material properties on the friction and wear behavior of pure metals are investigated. The sliding material pairs are selected based on their relative compatibility and relative hardness ratio of the specimen. The initial and steady-state friction coefficients are obtained in the experiments and the wear rates are quantitatively investigated. It is shown that the initial friction coefficient is affected by the hardness ratio of sliding materials. Furthermore, in steady state condition, neither hardness ratio nor compatibility has significant influence on the frictional behavior. As for wear, the ductility of the metal affects the wear particle generation process which in turn affects the frictional behavior. The findings of this research suggest that frictional interaction cannot be simply characterized by either compatibility or hardness ratio of the materials undergoing sliding contact.