• Title/Summary/Keyword: Wear particles

Search Result 370, Processing Time 0.023 seconds

Wear behavior of $Si_3N_4$-SiC nanocomposite in water

  • Kim, S. H.;Lee, S. W.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.10a
    • /
    • pp.187-187
    • /
    • 1997
  • Silicon nitride is the most excellent materials among structural ceramics. It has been reported that fracture toughness was improved with adding second phase particles, whisker, fiber etc. However, containing of second phase particles enhanced fracture toughness, however flexural strength was degraded. As adding nanosize SiC particles into silicon nitride, the physical properties of fluxural strength, fracture toughness, the modulus of elasticity. In this study, 2wt% $Al_2$O$_3$ and 4 wt% $Y_2$O$_3$ were added into UBE E-10 and 0, 10, 20, 30, 40, 50 vol% nano-SiC powder (Sumitomo T1 powder) were added, respectively. It is hot pressed at 185$0^{\circ}C$ for 1 hour. Most of structural ceramics for engineering application are wear resistance. In this study, wear behaviors (in water) of silicon nitride with varying the amount of nano-size silicon carbide were investigated, and was compared to physical properties. Simultaneously wear mechanism will be found out.

  • PDF

Development of Friction Reduction Method between Piston Ring and Cylinder Liner (피스톤 링과 실린더 라이너에서의 마찰저감 기술개발)

  • 김완호;차금환;김대은;임윤철
    • Tribology and Lubricants
    • /
    • v.14 no.4
    • /
    • pp.37-43
    • /
    • 1998
  • The friction loss between piston rings and cylinder liner is due to the tension of the piston rings. Lubricant is usually supplied to reduce the friction. However, the sliding speed of the piston varies during the reciprocating cycle and is very low near TDC(Top Dead Center)/BDC(Bottom Dead Center), where the hydrodynamic lubrication cannot be sustained. Since the lubrication regime is shifted from the hydrodynamic to the boundary lubrication near TDC/BDC, wear particles are easily generated so that the friction loss becomes bigger and bigger due to the plowing effect of wear particles. In this study, for the purpose of reducing the friction loss, an undulated surface is adopted to the cylinder liner to trap wear particles. The friction force variations, which are measured by strain gaged, show that the concept of undulated surface is one of the promising methods to effectively reduce the friction between piston rings and cylinder liner.

Preliminary study on the Condition Monitoring of Wind-turbine Gearbox (풍력발전기용 증속기 상태 모니터링에 관한 기초 연구)

  • Park, Young-Jun;Lee, Jae-Jeong;Lee, Geun-Ho;Nam, Yong-Yun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.343-346
    • /
    • 2008
  • To improve the reliability and extend the life for a wind-turbine gearbox, the gearbox needs to be monitored and analysed exactly. This study was conducted to analyze and detect the gearbox conditions when lubricating oil contaminated by wear particles was used. Characteristics of the gearbox failure by wear particles were monitored simultaneously by the on-line measurement sensor of vibration, oil condition and temperature. For the detail vibration analyses, frequency analysis(FFT) was performed. The results of the study were summarized as follows: Vibrational signal was found sensitive to abnormal changes of the gearbox conditions when lubricant was contaminated by wear particles. Also, using frequency analysis for the harmonics of gear mesh frequency(GMF), it is found that the failure of gearbox was caused by the damages of meshing gears. However, temperature and oil condition measuring signals were found not so effective to detect any gearbox failure by oil contamination.

  • PDF

Influence of Slip Angle on Abrasion Behavior of NR/BR Vulcanizates

  • Eunji Chae;Sung-Seen Choi
    • Elastomers and Composites
    • /
    • v.58 no.1
    • /
    • pp.17-25
    • /
    • 2023
  • Abrasion tests of model tire tread compounds (NR and NR/BR blend compounds) were performed at different slip angles (1° and 7°) using a laboratory abrasion tester. The abrasion behavior was investigated by analyzing the worn surface and wear particles. The abrasion spacing formed on the specimen worn at the large slip angle of 7° was significantly narrower than that at the small slip angle of 1°, while the abrasion depth for the specimen worn at 7° was lower than that at 1°. The abrasion spacing and depth tended to be narrower and lower, respectively, as the BR content increased. The abrasion patterns were clearly visible on the outside of the specimen for the slip angle of 1° but not for 7°. The wear particles had a rough surface and there were numerous micro-bumps. It was found that the crosslink density affected the abrasion patterns and morphologies of the wear particles.

Surface damage analysis of Head/Disk interface using AFM (AFM을 이용한 Head/Disk의 표면파손에 관한 고찰)

  • 정구현;이성창;김대은
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.357-361
    • /
    • 1997
  • In this work surface damage of head and disk of head disk drive was analysed using an Atomic Force Microscpoe. The initial damage of the disk occurred by generation of extermely small wear particles. Also it was show that wear particles tend to pile up near the front side of the slider. The surface damage mechanism of drag test and contact-start-stop test was found to be quite similar.

  • PDF

A Study on the Surface Damage between Head/Disk Interfaces by Using AFM (AFM을 이용한 Head/Disk의 표면 파손에 관한 고찰)

  • 이성창;정구현;김대은
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.167-174
    • /
    • 1998
  • In this work the surface damage of head and disk of a hard disk drive was analysed using an Atomic Force Microscope. The initial damage of the disk occurred by generation of extremely small wear particles. Also it was shown that wear particles tend to pile up near the front side of the slider. The surface damage mechanism of drag test and contact-start-stop test was found to be quite similar.

  • PDF

Study on Sliding Wear Characteristics and Processing of MoSi

  • Park, Sungho;Park, Wonjo;Huh, Sunchul
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.4
    • /
    • pp.244-249
    • /
    • 2012
  • In this study, a monolithic MoSi2 matrix reinforced with 20 vol% SiC particles, a SiC/MoSi2 composite matrix reinforced with 20 vol% ZrO2 particles, and a ZrO2/MoSi2 composite were fabricated using hot press sintering at $1350^{\circ}C$ for 1 h under a pressure of 30 MPa. The Vickers hardness and sliding wear resistance of the monolithic MoSi2, ZrO2/MoSi2, and SiC/MoSi2 composite were investigated at room temperature. A wear behavior test was carried out using a disk-type wear tester with a silicon nitride ball. The ZrO2/MoSi2 composite showed an average Vickers hardness value and excellent wear resistance compared with the monolithic MoSi2 and SiC/MoSi2 composite at room temperature.

The Wear charactericstics and Machinability to The type of Cast-iron of The Slot part of cylinder for Rotary compressor (로타리압축기 실린더 Slot부의 주조조직에 따른 가공표면 및 마모특성에 관한 연구)

  • 김동한
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.77-82
    • /
    • 1998
  • The Part of slot on rotary compressor which plays an important part of the reliability and performance is studied on machinability and the wear characteristics for the specimen made by sand mold and permanent mold. The experiment are used the face cutter of milling machine which make the processing surface like broaching process and rollblock wear test machine. Permanent-mold casting iron is not affected by variation of RPM of milling machine, but sand-mold cast-iron is improved to increasing RPM. Also sand-mold casting iron shows superior wear characteristic to permanent-mold casting iron. This results from harder matrix of pearlite structure and self-lubrication characteristics of graphite. And wear particles in tested oil show shape and size similar to severe wear particles of oil taken from rotary compressor. The material and surface condition of slot play important part of the reliability and performance.

  • PDF

Nanotribology of PMMA Thin Films Using an AFM (AFM을 이용한 PMMA (Poly Methyl Methacrylate) 박막의 나노트라이볼로지 연구)

  • 김승현;김용석
    • Transactions of Materials Processing
    • /
    • v.13 no.1
    • /
    • pp.59-64
    • /
    • 2004
  • Nano-scratch tests were performed on PMMA thin films spin-coated on a Si substrate using an atomic force microscopy (AFM) with loads ranging form 10nN to 100nN. At low loads, a ridge pattern was formed on the PMMA thin film surface. No wear particles were observed during the pattern-forming mild wear. At high loads, severe wear by plowing occurred, accompanied by wear particles. The film with the highest hardness showed the highest wear resistance. Friction force generated during the scratching was measured, which was closely related with surface deformation of the film. A simple empirical equation to deduce scratch hardness of the film from a linear fixed-distance scratch test was proposed, and scratching-speed dependency of the scratch hardness was displayed.

Fabrication of PTFE/Al Composite Materials by Hot Press Process (가압소결에 의한 PTFE/AI 복합재료 제조)

  • 이길근;김우열
    • Journal of Powder Materials
    • /
    • v.9 no.2
    • /
    • pp.103-109
    • /
    • 2002
  • To investigate the fabrication possibility of a polymer particle dispersed metal matrix composite, polytetrafluorothylene (PTFE) particles were incorporated into the Al by the powder metallurgy process. The characteristics of a PTFE/Al composite were evaluated by measuring the density and hardness, and analysis of XRD, FT-Raman and microstructure. And wear properties of these composites were evaluated under the dry wear condition. It was possible to obtain the PTFE particles stably dispersed Al matrix composites by the hot press process at the sintering temperature of $500^{\circ}C$. The wear coefficient of a PTFE/Al compoite decreased with increasing of the volume fraction of PTFE. The wear weight of a PTFE/Al composite increased with increasing of the volume fractionof PTFE in the range of 0~10 vol.%PTFE, and showed maximum value at 10 vol.%PTFE, and then decreased at 20vol.%PTFE.