• Title/Summary/Keyword: Wear monitoring

Search Result 288, Processing Time 0.022 seconds

Condition Monitoring of Tool wear using Sound Pressure and Fuzzy Pattern Recognition in Turning Processes (선삭공정에서 음압과 퍼지 패턴 인식을 이용한 공구 마멸 감시)

  • 김지훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.164-169
    • /
    • 1998
  • This paper deals with condition monitoring for tool wear during tuning operation. To develop economic sensing and identification methods for turning processes, sound pressure measurement and digital signal processing technique are proposed. To identify noise sources of tool wear and reject background noise, noise rejection methodology is proposed. features to represent condition of tool wear are obtained through analysis using adaptive filter and FFT in time and frequency domain. By using fuzzy pattern recognition, we extract features, which are sensitive to condition of tool wear, from several features and make a decision on tool wear. The validity of the proposed system is condirmed through the large number of cutting tests in two cutting conditions.

  • PDF

Automated measurement of tool wear using an image processing system

  • Sawai, Nobushige;Song, Joonyeob;Park, Hwayoung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.311-314
    • /
    • 1995
  • This paper presents a method for measuring tool wear parameters based on two dimensional image information. The tool wear images were obtained from an ITV camera with magnifying and lighting devices, and were analyzed using image processing techniques such as thresholding, noise filtering and boundary tracing. Thresholding was used to transform the captured gray scale image into a binary image for rapid sequential image processing. The threshold level was determined using a novel technique in which the brightness histograms of two concentric windows containing the tool wear image were compared. The use of noise filtering and boundary tracing to reduce the measuring errors was explored. Performance tests of the measurement precision and processing speed revealed that the direct method was highly effective in intermittent tool wear monitoring.

  • PDF

화상해석에 의한 윤활운동면의 마멸분 형태 분석

  • 서영백;김형자;박흥식;전태옥
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.76-82
    • /
    • 1996
  • This paper was undertaken to analyze the morphology of wear debris generating from moving lubricated machine surfaces by image processing. The lubricating wear test was carried out under different experimental conditions using the wear test device was made in our laboritory and wear testing specimen of the pin on disk type wear rubbed in paraffine series base oil, by varying applied load, sliding distance. The four parameters(50% volumetric diameter, aspect, roundness and reflectivity) to describe the morphology have been developed and are outlined in the paper. A system using such techniques promises to obviate the need for subjective, human interpretation of particle morphology in machine condition monitoring, thus overcoming many of the difficulties with current methods and facilitating wider use of wear particle analysis in machine condition monitoring.

  • PDF

A study on the Wear Estimation of End Mill Using Sound Frequency Analysis (음향주파수 분석에 의한 엔드밀의 마모상태 추정에 관한 연구)

  • Cho Taik Dong;Lee Chang hee;Sohn Jang Young
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.209-212
    • /
    • 2002
  • The wear process of end mill is a so complicated process that a more reliable technique is required for the monitoring and controling the tool life and its performance. This research presents a new tool wear monitoring method based on the sound signal generated on the machining. The experiment carried out continuous-side-milling for 4 cases using the high-speed steel slot drill under wet condition. The sound pressure was measured at 0.5m from the cutting zone by a dynamic microphone, and was analyzed at frequency domain. The tooth passing frequency appears as a harmonics form, and end mill wear is related with the first harmonic. It can be concluded from the result that the tool wear is correlate with the intensity of the measured sound at tooth passing frequency estimation of end mill wear using sound is possible through frequency analysis at tooth passing frequency under the given circumstances.

  • PDF

Monitoring of Mechanical Seal Failure with Artificial Neural Network (신경회로망을 이용한 미케니컬 실의 이상상태 감시)

  • Lee, W.K.;Lim, S.J.;Namgung, S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.12
    • /
    • pp.30-37
    • /
    • 1995
  • The mechanical seals, which are installed in rotating machines like pump and compressor, are gengrally used as sealing devices in the many fields of industries. The failure of mechanical seals such as leakage,fast and severe wear, excessive torque, and squeaking results in big problems. To monitor the failure of mechanical seals and to propose the proper monitoring techniques with artificial neural network, sliding wear experiments were conducted. Torque and temperature of the mechanical seals were measured during experiments. Optical microstructure was observed for the wear processing after every 10 minute sliding at rotation speed of 1750 rpm and scanning electron microscopy was also observed. During the experiment, the variation of torque and temperature that meant an abnormal phenomenon, was observed. That experimental data recorded were applied to the developed monitoring system with artificial neural network. This study concludes that torque and temperature of mechanical seals wil be used to identify and to monitor the condition of sliding motion of mechanical seals. An availability to monitor the mechanical seal failure with artificial neural network was confirmed.

  • PDF

Analysis of Wear Debris for Machine Condition Diagnosis of the Lubricated Moving Surface (기계윤활 운동면의 작동상태 진단을 위한 마멸분 해석)

  • Seo, Yeong-Baek;Park, Heung-Sik;Jeon, Tae-Ok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.835-841
    • /
    • 1997
  • Microscopic examination of the morphology of wear debris is an accepted method for machine condition and fault diagnosis. However wear particle analysis has not been widely accepted in industry because it is dependent on expert interpretation of particle morphology and subjective assessment criteria. This paper was undertaken to analyze the morphology of wear debris for machine condition diagnosis of the lubricated moving surfaces by image processing and analysis. The lubricating wear test was performed under different sliding conditions using a wear test device made in our laboratory and wear testing specimen of the pin-on-disk-type was rubbed in paraffine series base oil. In order to describe characteristics of debris of various shape and size, four shape parameters (50% volumetric diameter, aspect, roundness and reflectivity) have been developed and outlined in the paper. A system using such techniques promises to obviate the need for subjective, human interpretation of particle morphology in machine condition monitoring, thus to overcome many of the difficulties in current methods and to facilitate wider use of wear particle analysis in machine condition monitoring.

Tool Condition Monitoring Technique Using Computer Vision and Pattern Recognition (컴퓨터 비젼 및 패턴인식기법을 이용한 공구상태 판정시스템 개발)

  • 권오달;양민양
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.27-37
    • /
    • 1993
  • In unmanned machining, One of the most essential issue is the tool management system which includes controlling. identification, presetting and monitoring of cutting tools. Especially the monitoring of tool wear and fracture may be the heart of the system. In this study a computer vision based tool monitoring system is developed. Also an algorithm which can determine the tool condition using this system is presented. In order to enhance practical adaptability the vision system through which two modes of images are taken is located over the rake face of a tool insert. And they are analysed quantitatively and qualitatively with image processing technique. In fact the morphologies of tool fracture or wear are occurred so variously that it is difficult to predict them. For the purpose of this problem the pattern recognition is introduced to classify the modes of the tool such as fracture, crater, chipping and flank wear. The experimental results performed in the CNC turning machine have proved the effectiveness of the proposed system.

The Automated Measurement of Tool Wear using Computer Vision (컴퓨터 비젼에 의한 공구마모의 자동계측)

  • Song, Jun-Yeop;Lee, Jae-Jong;Park, Hwa-Yeong
    • 한국기계연구소 소보
    • /
    • s.19
    • /
    • pp.69-79
    • /
    • 1989
  • Cutting tool life monitoring is a critical element needed for designing unmanned machining systems. This paper describes a tool wear measurement system using computer vision which repeatedly measures flank and crater wear of a single point cutting tool. This direct tool wear measurement method is based on an interactive procedure utilizing a image processor and multi-vision sensors. A measurement software calcultes 7 parameters to characterize flank and crater wear. Performance test revealed that the computer vision technique provides precise, absolute tool-wear quantification and reduces human maesurement errors.

  • PDF

A Study on the Detection of the Abnormal Tool State in Drilling of Hot-rolled High Strength Steel (열연강판의 드릴링시 공구의 이상상태 검출에 관한 연구)

  • 신형곤;김민호;김태영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.888-891
    • /
    • 2000
  • Drilling is one of the most important operations in machining industry and usually the most efficient and economical method of cutting a hole in metal. From automobile parts to aircraft components, almost every manufactured product requires that holes are to be drilled for the purpose of assembly, creation of fluid passages, and so on. It is therefore desirable to monitor drill wear and hole quality changes during the hole drilling process. One important aspect in controlling the drilling process is drill wear status monitoring. With the monitoring, we may decide on optimal timing for tool change. The necessity of the detection of tool wear, fracture and the abnormal tool state has been emphasized in the machining process. Accordingly, this paper deals with the cutting characteristics of the hot-rolled high strength steels using common HSS drill. The performance variables include drill wear data obtained from drilling experiments conducted on the workpiece. The results are obtained from monitoring of the cutting force and Acoustic Emission (AE) signals, and from the detection of the abnormal tool state with the computer vision system.

  • PDF