• Title/Summary/Keyword: Wear model

Search Result 550, Processing Time 0.028 seconds

A Model for Thermal and Wear Crown at the Hot Strip Roll Mill (열간사상압연기에서의 열 및 마멸크라운에 관한 연구)

  • Park, Hae-Doo;Kim, Jin-Wook;Choi, Jai-Chan;Baek, Nam-Joo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.3
    • /
    • pp.14-25
    • /
    • 1990
  • A model predicting thermal and wear crown in order to control strip crown and shape has been investigated at the hot roll mill. A basic equation of predicting wear crown was obtained experimentally whereas thermal crown was approximately analyzed by the integral method. The calculated result based on the accumulative model of basic eauation coincides with that measured under the real rolling conditions. The effect of wear corwn is also analyzed by the longitudinal feeding method of the work roll. The high frequency feeding method is recommended in removing local wear effectively.

  • PDF

A Study on the Sliding Wear Rate Calculation in Spur Gears (Spur Gear의 미끄럼 마멸률에 관한 연구)

  • 김태완;문석만;구영필;조용주
    • Tribology and Lubricants
    • /
    • v.16 no.5
    • /
    • pp.357-364
    • /
    • 2000
  • In this study, the sliding wear in spur gears, using Archard's wear model, is analyzed. Formulas of tooth sliding wear depth along the line of action are derived. The tooth profile is modified Id make a smooth transmission of the normal loads and the cylinder profile for reducing the pressure spike is suggested. The sliding wear rate is calculated with these profiling results. We expect these modification methods to contribute to the reduction of sliding wear not only in the root, but the tip of tooth and tooth edge.

A Method to Predict Wear Depth Using Inversely Calculated Wear Constants from Known Wear Depth and Time (측정된 마모 깊이와 시간에 의해 역으로 계산된 마모상수를 이용한 마모 깊이 예측)

  • Lee, Yong-Son;Kim, Tae-Soon;Park, Chi-Yong;Boo, Myung-Hwan;Lee, Chang-Sub
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.178-188
    • /
    • 2003
  • The wear of steam generator tubes is due to the vibration occurred between tubes and tube supporters. To predict the future wear depth, the wear constants of the impact and the sliding model is used. The wear constants, 3C/2 and K/3H, are found inversely from known wear depth and time. Using these constants, the future wear depths are found from two bodies that deform the elliptical shape. The results are compared with the measured wear depth of steam generator tubes in a nuclear power plant. The results show that the predicted wear depth envelopes the measured wear depth.

  • PDF

A Study on the Prediction of Die Wear using Wear Model (마멸모델을 이용한 금형마멸 예측에 관한 연구)

  • Park, Jong-Nam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.90-96
    • /
    • 2013
  • During the cold forming, due to high working pressure acting on the die surface, failure mechanics must be considered before die design. One of the main reasons of die failure in industrial application of metal forming technologies is wear. Die wear affects the tolerances of formed parts, metal flow and costs of process etc. The only way to control these failures is to develop methods which allow prediction of die wear and which are suited to be used in the design state in order to optimize the process. In this paper, the wear experiments to obtain the wear coefficients and the upsetting processes was accomplished to observe the wear phenomenon during the cold forming process. The analysis of upsetting processes was accomplished by the rigid-plastic finite element method. The result from the deformation analysis was used to analyse the die wear during the processes and the predicted die wear profiles were compared with the measured die wear profiles.

A Study on the Wear comfort and the Wearing Effects of Maternity Girdles (시판 임산부용 거들의 착용감 및 착용효과에 관한 연구)

  • 최혜선
    • Journal of the Korean Home Economics Association
    • /
    • v.29 no.3
    • /
    • pp.11-21
    • /
    • 1991
  • The study has been intended to find out meaningful information about the development of a prototype of enhanced maternity girdle. The girdles of three different models which were available in the market have been carried out by three six-month pregnant women and three nine-month pregnant women. The results of the study are as follows. 1. All three girdles showed improved wear effects in order of model A, model B, model C. Body surface area measurement and two body surface angles of abdomen are significantly dicreased by wearing and type of girdles. It is presumed that the reasons of good wear effect of model A is low expansion rate of the material and tight fitness of the model. Model B is made of material whose expansion rate is higher than model A. Also abdominal part of the model B is bias cut which is considered to result better stretch and consequently lower wear effect. 2. For wear comfort, subjects preferred in order of model B, model C, and model A. All subjects feel more comfortable after wearing girdles 30 minutes than after wearing girdles 1 day. Comparing 2 subject groups, 6-month pregnant group feel more comfortable about wearing girdles than 9-month pregnant group. 3. The girdles are expanded as a whole in order of model B, model C and model A. Considering the expansion rate of some specific area of the girdles, abdominal area expands more than hip area which expands more than thigh area. The expansion rates of girdles worn to 6-month pregnant group are very low at all area, while the expansion rates of girdles worn to 9-month pregnant group are very high.

  • PDF

A Study on Fretting-Wear Behavior of Inconel 690 due to Surrounding Temperature (주위 온도에 따른 Inconel690의 마멸 거동에 관한 연구)

  • 임민규;박동신;김대정;이영제
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.296-303
    • /
    • 2001
  • In nuclear power steam generators, high flow rates can induce vibration of the tubes resulting in fretting wear damage due to contacts between the tubes and their supports. In this paper the fretting wear tests and the sliding wear tests were performed using the steam generator tube materials of Inconel 690 against STS 304. Sliding tests with the pin-on-disk type tribometer were done under various applied loads and sliding speeds at air and water environment. Fretting tests were done under various vibrating amplitudes, applied normal loads and various temperatures. From the results of sliding and fretting wear tests, the wear of Inconel 690 can be predictable using the work rate model. Depending on normal loads and vibrating amplitudes, distinctively different wear mechanisms and often drastically different wear rates can occur. At room temperature, the wear coefficient K of Inconel 690 is 7.57${\times}$10$\^$13/Pa$\^$1/ in air and it is 1.93${\times}$10$\^$13/Pa$\^$1/ in water. At room temperature, it is found that the wear volume in air is more than in water. In water, the wear coefficient K at 50$^{\circ}C$ and 80$^{\circ}C$ is 4.35${\times}$10$\^$-13/Pa$^1$ and 5.81${\times}$10$\^$-13/Pa$^1$ respectively, Therefore, it is found that the wear volume extremely increases by increasing on temperature in water. This study shows that the dissolved oxygen with temperature increment increases and the wear due to fluidity is severe.

  • PDF

A Development Study for Fashion Market Forecasting Models - Focusing on Univariate Time Series Models -

  • Lee, Yu-Soon;Lee, Yong-Joo;Kang, Hyun-Cheol
    • Journal of Fashion Business
    • /
    • v.15 no.6
    • /
    • pp.176-203
    • /
    • 2011
  • In today's intensifying global competition, Korean fashion industry is relying on only qualitative data for feasibility study of future projects and developmental plan. This study was conducted in order to support establishment of a scientific and rational management system that reflects market demand. First, fashion market size was limited to the total amount of expenditure for fashion clothing products directly purchased by Koreans for wear during 6 months in spring and summer and 6 months in autumn and winter. Fashion market forecasting model was developed using statistical forecasting method proposed by previous research. Specifically, time series model was selected, which is a verified statistical forecasting method that can predict future demand when data from the past is available. The time series for empirical analysis was fashion market sizes for 8 segmented markets at 22 time points, obtained twice each year by the author from 1998 to 2008. Targets of the demand forecasting model were 21 research models: total of 7 markets (excluding outerwear market which is sensitive to seasonal index), including 6 segmented markets (men's formal wear, women's formal wear, casual wear, sportswear, underwear, and children's wear) and the total market, and these markets were divided in time into the first half, the second half, and the whole year. To develop demand forecasting model, time series of the 21 research targets were used to develop univariate time series models using 9 types of exponential smoothing methods. The forecasting models predicted the demands in most fashion markets to grow, but demand for women's formal wear market was forecasted to decrease. Decrease in demand for women's formal wear market has been pronounced since 2002 when casualization of fashion market intensified, and this trend was analyzed to continue affecting the demand in the future.

Drilling force model considering tool wear (마모를 고려한 드릴 절삭력 모델)

  • 최영준;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1042-1047
    • /
    • 2001
  • A mechanistic model is developed to predict the thrust force and cutting torque of drilling process including wear. A mechanistic oblique cutting force model is used to develop the drilling force model. The cutting lips are divided into small elements and elemental forces are calculated by multiplying the specific cutting pressure with the elemental chip area. The specific cutting pressure is a function of chip thickness, cutting velocity, rake angle and wear. The total forces are then computed by summing the elemental forces. Measured cutting forces are in good agreement with the simulated cutting forces.

  • PDF

Production Line Planning for Functional Sports Wear using Simulation Model (시뮬레이션을 이용한 특수 고기능 의류업체의 생산라인 설계에 관한 연구)

  • 최정욱
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.8
    • /
    • pp.1205-1215
    • /
    • 2002
  • The purpose of this study was to develop a production line using simulation method, which could improve work allocation, labor utility and productivity. Using simulation software AIM, a simulation model of functional sports wear assembly line was developed. A functional sports wear production factory were analysed to gather data necessary for this research. Factory layouts, production facilities, work time of each unit jobs were investigated. The data obtained were used as to build a base simulation model. Then, the base simulation model was verified using the obtained data, such as daily productivity. Using simulation method, low alternative production plans were suggested, which were to enhance productivity, and work efficiency and to reduce queue length and throughput time.

Analysis of Two-Dimensional Fretting Wear Using Substructure Method (부분구조법을 이용한 2차원 프레팅 마모 해석)

  • Bae, Joon-Woo;Chai, Young-Suck;Lee, Choon-Yeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.7 s.262
    • /
    • pp.784-791
    • /
    • 2007
  • Fretting, which is a special type of wear, is defined as small amplitude tangential oscillation along the contacting interface between two materials. In nuclear power plants, fretting wear caused by flow induced vibration (FIV) can make a serious problem in a U-tube bundle in steam generator. In this study, substructure method is developed and is verified the feasibility for the finite element model of fretting wear problems. This method is applied to the two-dimensional finite element analyses, which simulate the contact behavior of actual tube to support. For these examples, computing time can be reduced up to 1/5 in comparisons with conventional finite element analyses.