• 제목/요약/키워드: Wear damage

Search Result 299, Processing Time 0.023 seconds

Surface Damage Accumulation in Alumina under the Repeated Normal-Tangential Contact Forces

  • Lee, Kwon-Yong;Choi, Sung-Jong;Youn, Ja-Woong
    • KSTLE International Journal
    • /
    • v.1 no.1
    • /
    • pp.48-51
    • /
    • 2000
  • Surface damage accumulation of alumina ceramics under the cyclic stress state was analyzed. The alternating stress state in repeat pass sliding contact was simulated by a synchronized biaxial (normal and tangential) repeated indentation technique. Wear debris formation mechanism through damage accumulation and fatigue grain failure in both alumina ceramic balls and flat disks was confirmed, and the contact induced surface degradation due to fatigue cracking accumulation was quantified by measuring vertical contact displacement. Variation of structural compliance (slope of load-displacement curve) of two contacting bodies was expressed as a variation of the apparent elastic property, called pseudo-elastic constant, of the contact system.

  • PDF

Experimental Investigation of Friction and Wear Characteristics of O-Ring (O-ring의 마찰, 마모 특성에 관한 실험적 고찰)

  • Oh, Jun-Chul;Kim, Dae-Eun;Kim, Hyun-Jun;Kim, Mun-Hwan;Kim, Chun-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1125-1131
    • /
    • 2009
  • O-rings are commonly used in machines as a seal. Due to prolonged use the surface of an O-ring can degrade which can lead to leakage as well as contamination. Damage of O-rings used in vacuum applications such as sputter is caused by various mechanisms. Particles detached from the O-ring may cause significant problems on the performance of the system in the vacuum chamber. Therefore, understanding the tribological behavior of O-rings is important to tackle the damage caused by repeated contact. In this work, FKM rubber was used for friction and wear tests conducted to investigate the tribological behavior of O-rings. A reciprocating type of a tribo-tester was used for the tests. The friction coefficient between the steel ball and the FKM specimen was quite high. Also, in order to identify the wear behavior, the surface of the FKM specimen was characterized using both optical and scanning electron microscopes. Evidence of wear due to adhesion and extrusion could be found. The results of this work will aid in improving the durability of O-rings.

Tool Lifecycle Optimization using ν-Asymmetric Support Vector Regression (ν-ASVR을 이용한 공구라이프사이클 최적화)

  • Lee, Dongju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.208-216
    • /
    • 2020
  • With the spread of smart manufacturing, one of the key topics of the 4th industrial revolution, manufacturing systems are moving beyond automation to smartization using artificial intelligence. In particular, in the existing automatic machining, a number of machining defects and non-processing occur due to tool damage or severe wear, resulting in a decrease in productivity and an increase in quality defect rates. Therefore, it is important to measure and predict tool life. In this paper, ν-ASVR (ν-Asymmetric Support Vector Regression), which considers the asymmetry of ⲉ-tube and the asymmetry of penalties for data out of ⲉ-tube, was proposed and applied to the tool wear prediction problem. In the case of tool wear, if the predicted value of the tool wear amount is smaller than the actual value (under-estimation), product failure may occur due to tool damage or wear. Therefore, it can be said that ν-ASVR is suitable because it is necessary to overestimate. It is shown that even when adjusting the asymmetry of ⲉ-tube and the asymmetry of penalties for data out of ⲉ-tube, the ratio of the number of data belonging to ⲉ-tube can be adjusted with ν. Experiments are performed to compare the accuracy of various kernel functions such as linear, polynomial. RBF (radialbasis function), sigmoid, The best result isthe use of the RBF kernel in all cases

A Study on the Optimum Image Capture of Wear Particle for Condition Monitoring of Machine (기계의 상태 모니터링을 위한 최적의 마멸분 영상 획득 방법에 관한 연구)

  • Cho, Yon-Sang;Park, Heung-Sik
    • Tribology and Lubricants
    • /
    • v.23 no.6
    • /
    • pp.301-305
    • /
    • 2007
  • The wear particle analysis has been known as very effective method to foreknow and decide a moving situation and a damage of machine parts by using the digital computer image processing. But it was not laid down and trusted to calculate shape parameters of wear particle and wear volume. In order to apply image processing method in the foreknowledge and decision of lubricated condition, it needs to verify the reliability of the calculated data by the image processing and to lay down the number of images and the amount of wear particle in one image. In this study, the lubricated friction experiment was carried out in order to establish the optimum image capture with the SM45C specimen under experiment condition. The wear particle data were calculated differently according to the number of image and the amount of wear particle in one image.

FE Analysis of Forging Process for Improving Tool Life in Hot Forging of CV Joint Outer Race (등속조인트 외륜 열간단조의 금형수명 향상을 위한 단조공정 유한요소해석)

  • Kim, Yohng-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.3
    • /
    • pp.56-62
    • /
    • 2014
  • During the hot forging process, the most common cause of tool failure is wear. Tool wear results in the gradual loss of part tolerances, after which eventually the tool must be replaced or repaired. In order to maximize the lifetimes of forging tools, it is important to investigate the wear mechanisms of these tools. In this study, the hot forging of the outer race of an automotive constant-velocity joint was analyzed by a finite element method to investigate the wear distribution, especially the amount and location of the maximum expected wear damage, using Archard's wear model, which was modified considering the forging temperature. Forging analyses were carried out after modifying blocker forging tools based on established versions. The modified blocker tools resulted in an increase in the tool life up to 31% with a finisher punch.

Operating Condition Diagnosis of the Lubricated Machine Moving Surface by Image Analysis (화상해석에 의한 기계윤할 운동면의 작동상태 진단)

  • 박흥식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.79-87
    • /
    • 1999
  • The most part of the faculty drop a trouble and damage of machine equipment even if whatever cause they break out take place at local and trifling place and the factor dominating their trouble is due to wear debris occurred in the lubricated machine moving surface. This study has been car-ried out to identify morphology of wear debris on the lubricated machine moving system by means of computer image analysis. Namely the wear debris contained in lubricating oil extracted from movable machine equipment will be filtered through membrane filter(void diameter 0.45${\mu}m$) and will be analyzed with its data information such as 50% volume diameter aspect roundness and reflectivity. Morphological characteristic of wear debris is easily distinguished by four shape parameters it is necessary to divide small class of every 100 wear debris in total wear particles in order to distinguish morphological characteristic of wear debris more easily by computer image analysis. We are sure that operation condition diagnosis of the lubricated machine moving surfaces is possible by computer image analysis.

  • PDF

Abrasiveness Behavior of Counterpart Sliding Against Titanium Carbide Based Metal Matrix Composite (탄화 티타늄 금속기 복합재에 대한 상대재의 마모거동)

  • Lee, Jeong-Keun
    • Journal of Powder Materials
    • /
    • v.13 no.6 s.59
    • /
    • pp.450-454
    • /
    • 2006
  • Wear of steel plate was measured during unlubricated sliding against TiC composites. These composites consist of round TiC grains and steel matrix. TiC grain itself exhibits low surface roughness and round shape, which does not bring its counterpart into severe damage from friction. In our work a classical experimental design was applied to find out a dominant factor in counterpart wear. The analysis of the data showed that only the applied load has a significant effect on the counterpart wear. Wear rate of counterpart increased non-linearly with applied load. Amount of wear was discrepant from expectation of being in proportion to the load by analogy with friction force. Our experimental result from treating matrix variously revealed bimodal wear behavior between the composites and counterpart where a mode seems to result from the special lubricant characteristic of TiC grains, and the other is caused by metal-to-metal contact. The two wear mechanisms were discussed.

The Effect of TiN and CrN Coatings on the Fretting Wear of Tubes against Supports in a Nuclear Steam Generators

  • Park, Dong-Shin;Park, Jung-Min;Kim, Jin-Seon;Lee, Young-Ze
    • KSTLE International Journal
    • /
    • v.10 no.1_2
    • /
    • pp.33-36
    • /
    • 2009
  • The nuclear steam generator is composed of a bundle of tubes. The length of these tubes is very long, but their diameter is small. Fluid exists inside of the steam generator and its flow causes vibration, therefore these tubes are supported by anti-vibration bars. The wear damage due to the vibration is known as fretting wear, which should be minimized to ensure the safety of the plants. Research needs to be done about decreasing the amount of fretting wear. Hard coatings have proven to be very effective in reducing the amount of wear. The commercial coatings of TiN and CrN have excellent wear resistance and are used to protect the Inconel tube from fretting wear. The tube-on-flat type tester was used for conducting the fretting wear tests. It was found that the wear amounts of the coated tubes decreased depending on the coating thickness. CrN was found to be very effective in reducing the wear, while the wear amounts were dependent on the coating thickness in the case of TiN and a thick coating of TiN was very effective on wear resistance.

Sliding Wear and Fretting Wear of Steam Generator Tube Materials (증기발생기 튜브재질의 미끄럼 마멸 및 프레팅 마멸 특성)

  • 김동구;조정우;이영제
    • Tribology and Lubricants
    • /
    • v.17 no.5
    • /
    • pp.380-385
    • /
    • 2001
  • In nuclear power steam generators, high flow rates can induce vibration of the tubes resulting in fretting wear damage due to contacts between the tubes and their supports. In this paper the fretting wear tests and the sliding wear tests were performed using the steam generator tube materials of Inconel 600 and 690 against STS 304. Sliding tests with the pin-on-disk type tribometer were done under various applied loads and sliding speeds at air environment. Fretting tests were done under various vibrating amplitudes and applied normal loads. From the results of sliding and fretting wear tests, the wear of Inconel 600 and 690 can be predictable using the work rate model. Depending on normal loads and vibrating amplitudes, distinctively different wear mechanisms and often drastically different wear rates can occur. It was found the results that the wear coefficients for Inconel 600 and 690 were 262.3$\times$10$\^$-15/Pa$\^$-1/ and 209.2$\times$10$\^$-15/Pa$\^$-1/, respectively. This study shows that Inconel 690 can provide much better wear resistance than Inconel 600 in air.

Characterization of Contact Surface Damage in a Press-fitted Shaft below the Fretting Fatigue Limit (피로한도 이하에서 발생하는 압입축의 접촉손상 특성)

  • Lee, Dong-Hyong;Kwon, Seok-Jin;Ham, Young-Sam;You, Won-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.42-47
    • /
    • 2010
  • In this paper, the characteristics of contact surface damage due to fretting in a press-fitted shaft below the fretting fatigue limit are proposed by experimental methods. A series of fatigue tests and interrupted fatigue tests of small scale press-fitted specimen were carried out by using rotating bending fatigue test machine. Macroscopic and microscopic characteristics were examined using scanning electron microscope (SEM), optical microscope or profilometer. It is found that fretting fatigue cracks were initiated even under the fretting fatigue limit on the press-fitted shafts by fretting damage. The fatigue cracks of press-fitted shafts were initiated from the edge of contact surface and propagated inward in a semi-elliptical shape. Furthermore, the fretting wear rates at the contact edge are increased rapidly at the initial stage of total fatigue life. After steep increasing, the increase of wear rate is nearly constant under the load condition below the fretting fatigue limit. It is thus suggested that the fretting wear must be considered on the fatigue life evaluation because the fatigue crack nucleation and propagation process is strongly related to the evolution of surface profile by fretting wear in the press-fitted structures.