• Title/Summary/Keyword: Wear Particle Concentration

Search Result 26, Processing Time 0.021 seconds

Performance Evaluation of Nano-Lubricants at Journal Bearing of Scroll Compressors (나노 윤활유를 이용한 스크롤 압축기 저널 베어링의 윤활특성 평가)

  • Kim, Kyong-Min;Hwang, Yu-Jin;Lee, Kwang-Ho;Sung, Chi-Un;Lee, Jae-Keun;Jung, Won-Hyun;Kim, Sung-Choon;Jin, Hong-Kyun
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.189-193
    • /
    • 2008
  • Performance of refrigerant oil at the thrust-bearing and at the journal-bearing of a scroll compressor is a significant factor. This paper presents the friction and anti-wear characteristics of nano oil with a mixture of a refrigerant oil and carbon nano particles in the journal bearing of scroll compressors. The characteristics of friction and anti-wear using nano-oil is evaluated using the disk on disk tester and the journal bearing tester for measuring friction surface temperature and the coefficient of friction at the journal bearing tester. In journal bearing test, the average friction coefficient of high concentration nano-oil was decreased down to 18% compared to raw oil under 4,500 N and 3,600 rpm. It is believed that nano particles can be coated on the wear surfaces and the interaction of nano particles between surfaces can be improved the lubrication in the friction surfaces. Worn surfaces of frictional specimen were measured with straightness. carbon nano oil enhances the characteristics of the anti-wear and friction at the joural bearing of scroll compressors.

  • PDF

Effect of environment on the tribological behavior of Si-incorporated diamond-like carbon films (실리콘이 첨가된 다이아몬드상 카본 필름의 트라이볼로지적 특성에 미치는 환경변화의 영향)

  • 양승호;공호성;이광렬;박세준;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.42-48
    • /
    • 1999
  • An experimental study was performed to discover the effect of environment on the tribological behavior of Si-incorporated diamond-like carbon(Si-DLC) film slid on a steel ball. The films were deposited on Si(100) wafers from radio-frequency glow discharge of mixtures of benzene and dilute silane gases. Experiments using a ball-on-disk test-rig was performed under vacuum, dry air and ambient air conditions. It was observed that coefficient of friction was decreased as the environmental condition changes from vacuum, to dry air. It was also observed that the coefficient of friction decreased with increasing silicon concentration in the film. Chemical analyses of debris suggested that the low and stable friction coefficient is closely related to the silicon rich oxide debris and the rolling action.

  • PDF

Three-dimensional numerical modeling of sediment-induced density currents in a sedimentation basin (3차원 수치모의를 통한 침사지에서의 부유사 밀도류 해석)

  • An, Sang Do;Kim, Gi-Ho;Park, Won Cheol
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.3
    • /
    • pp.383-394
    • /
    • 2013
  • A sedimentation basin is used to remove suspended sediments which can cause abrasive and erosive wear on hydraulic turbines of hydropower plants. This sediment erosion not only decreases efficiency of the turbine but also increases maintenance costs. In this study, the three-dimensional numerical simulations were carried out on the overseas hydropower project. The simulations of flow and suspended sediment concentration were obtained using FLOW-3D computational fluid dynamics code. The simulations provide removal efficiency of a sedimentation basin based on particle sizes. The influence of baffles on the flow field and the removal efficiency of suspended sediments in the sedimentation basin has been investigated. This paper also provides the numerical simulations for sediment-induced density currents that may occur in the sedimentation basin. The simulation results indicate that the formation of density currents decreases the removal efficiency. When a baffle is installed in the sedimentation basin, the baffle provides intensive settling zones resulting in increasing the sediments settling. Thus the enhanced removal efficiency can be achieved by installing the baffle inside the sedimentation basin.

Heavy Metals in Road Deposited Sediments and Control of Them in Urban Areas: A Review (문헌고찰에 의한 도시 지역 도로퇴적물의 중금속 특성 및 적정 관리방안)

  • Kim, Do Gun
    • Land and Housing Review
    • /
    • v.13 no.3
    • /
    • pp.125-140
    • /
    • 2022
  • Road Deposited Sediment (RDS) is the solids formed from the wear of road, wear of vehicles, exhausts, and the input of the emissions from various sources out of the roads. RDS is seriously polluted by organic matter, nutrients, and metals. RDS plays an important role as the sink and the transport medium of the associated pollutants because RDS can be carried to the adjacent water system via stormwater runoff. In this regard, the heavy metals in RDS were investigated based on the publications. The contents of the metals in RDS were highly variable. The concentration of Cr, Ni, Cu, Fe, Zn, As, Cd, and Pb in urban RDS in various regions was in a range of 3.16-3,410, 1.15-1,382, 20.2-9,069, 2,980-124,853, 81-2,550, 2.3-214, 0.19-21.3, and 15.21-1,125 mg/kg, respectively. The anthropogenic enrichment of the metals in RDS was confirmed by the high concentration of Cu, Zn, Cd, and Pb. The contents of the metals were higher in industrial and traffic areas than in residential areas, while they were generally increased with decreasing particle size. It is believed that this study's results would contribute to quantifying the metals' load via RDS and establishing control strategies.

The Effect of Platform Screen Doors on PM10 Levels in a Subway Station and a Trial to Reduce PM10 in Tunnels

  • Son, Youn-Suk;Salama, Amgad;Jeong, Hye-Seon;Kim, Suhyang;Jeong, Jin-Ho;Lee, Jaihyo;SunWoo, Young;Kim, Jo-Chun
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.1
    • /
    • pp.38-47
    • /
    • 2013
  • $PM_{10}$ concentrations were measured at four monitoring sites at the Daechaung station of the Seoul subway. The four locations included two tunnels, a platform, and a waiting room. The outside site of the subway was also monitored for comparison purposes. In addition, the effect of the platform screen doors (PSDs) recently installed to isolate the $PM_{10}$ in a platform from a tunnel were evaluated, and a comparison between $PM_{10}$ levels during rush and non-rush hours was performed. It was observed that $PM_{10}$ levels in the tunnels were generally higher than those in the other locations. This might be associated with the generation of $PM_{10}$ within the tunnel due to the train braking and wear of the subway lines with the motion of the trains, which promotes the mixing and suspension of particulate matter. During this tunnel study, it was observed that the particle size of $PM_{10}$ ranged from 1.8 to 5.6 ${\mu}m$. It was revealed that the $PM_{10}$ levels in the tunnels were significantly increased by the PSDs, while those in the platform and waiting room decreased. As a result, in order to estimate the effect of ventilation system on $PM_{10}$ levels in the tunnels, fans with inverters were operated. It was found that the concentration of $PM_{10}$ was below 150 ${\mu}g/m^3$ when the air flow rate into a tunnel was approximately 210,000-216,000 CMH.

Assessment of dust exposure and personal protective equipment among dental technicians (치과기공사의 분진노출 수준 및 개인보호구 착용 실태 - 대구지역을 중심으로 -)

  • Park, Soo-Chul;Jeon, Man-Joong;SaKong, Joon
    • Journal of Technologic Dentistry
    • /
    • v.33 no.1
    • /
    • pp.93-102
    • /
    • 2011
  • Purpose: The study aimed to evaluate working environment for dental technician by measuring dust level, ventilation conditions and the use of personal protective equipment and to provide basic information required to improve working environment and develop health education programs for dental technician. Methods: A total of 240 dental technician who are registered with the Daegu Association of Dental technician and working at 34 dental laboratories participated in the study. And the dust level was measured at 21 different spots in 16 dental laboratories out of 34. Results: Of 34 dental laboratories, 31 (91.2%) were equipped with a ventilator, but the remaining 3 (8.8%) did not have a ventilator. By the number of ventilator, 1 to 3 ventilators were found in 22 dental laboratories (71.0%), 4 to 6 ventilators were in 7 laboratories (22.5%) and more than 7 ventilators in 2 laboratories(6.5%). According to the frequence of changing filters in dust collector, 20 dental laboratories (58.9%) changed filters every four weeks, 10 laboratories (29.4%) changed them every six weeks and 4 laboratories (11.7%) changed them every eight weeks. Of total respondents, 114 (61.3%) said they wore a mask all the time while working, 56 (29.6%) said they frequently wore a mask, 19 (10.1%) said they did not wear a mask. As for the type of masks, 159 (84.1%) used a disposable mask, 25 (13.2%) used a cotton mask and 5 (2.7%) used an anti-dust mask. For dust sat on their outfits while working, 102 (54.0%) shook their uniforms inside workplace to keep dust off the uniforms, 64 (33.9%) did not anything until they wash their uniforms and 23 (12.1%) shook their uniforms outside workplace to keep dust off the uniforms. Of total respondents, 182 (96.3%) had a particle in their eyes while carrying out grinding work. Based on the measurement of floating dust at workplace, 3 dental laboratories showed dust concentration exceeding the minimum level of 10 mg/$m^3$ allowed under the permit for environment. Of those, 1 laboratory had the dust concentration that was more than 1.5 times higher than the minimum level. Dust concentration was higher in laboratories that used a dust collector with 0.5 horse power and changed filters more than 3 weeks ago. Dust comprised of nickel (more than 70%), chrome (9%) and others. The mean chrome concentration was more than twice higher than the minimum permissible level of 0.5 mg/$m^3$. There were two laboratories that showed chrome concentration exceeding the level of 0.4 mg/$m^3$. Like dust concentration, chrome level was higher in laboratories that used a dust collector with 0.5 horse power and changed filters more than 3 weeks ago. There were six laboratories that had nickel concentration exceeding the minimum permissible level of 1 mg/$m^3$. Of those, one laboratory had nickel concentration that was more than three times higher than the minimum permissible level. Nickel concentration was also higher in laboratories that used a dust collector with 0.5 horse power and changed filters more than 3 weeks ago. Conclusion: It is not likely that heavy metal concentrations found in the study constitute respiratory dust. It is however necessary for health of dental technician to apply the Industrial Safety and Healthy Law to dental laboratories and make recommendations for the use of personal protective equipment, installation of a proper number of ventilators, more frequent change of filters in dust collector and improved ventilation for polishing work. At the same time, dental technician need education on how to use personal protective equipment and how to efficiently remove dust from their uniforms.