• Title/Summary/Keyword: Wear Equation

Search Result 106, Processing Time 0.029 seconds

Measurement of Saw-Teeth Wear by TALYSURF (TALYSURF에 의한 톱니의 마모량측정)

  • Hyun, Jung-Ihn;Klamecki, Barney E.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.22-27
    • /
    • 1980
  • Quantitative assessment of edge blunting of saw-teeth was carried out by TALYSURF. 1. Using the following equation, the real shape of a saw-tooth can be traced on the graph of TALYSURF. ${\frac{{\Delta}h}{h}}={\frac{V{\Delta}_x}{V_x}}$ {${\Delta}h$: vertical distance of stylus h: vertical distance in chart $V{\Delta}_x$: Velocity of stylus $V_x$: velocity of chart} 2. As shown on Fig 2, the error from stylus itself can be calculated by following equation. i) 13.8${\mu}{\leqq}$x<20.4${\mu}$ y=-0.2246x+4.59${\mu}$ ii) 0${\leqq}$x<13.8${\mu}$ y=${\sqrt{(-18{\mu})^2-x^2}}-1.42x+32.7{\mu}}$ 3. The relationship between profile of saw-tooth and error from stylus itself can be calculated by following equation. $E(%)=\frac{f(r){\times}{\frac{4}{18{\mu}}}}{f(R){\times}{\frac{R}{18.5{\mu}}}-f(r){\times}{\frac{r}{18{\mu}}}}{\times}100$ {E(%)${\frac{error\;of\;stylus}{dullness\;of\;saw\;tooth}}{\times}100$ r: radius of stylus tip R: radius of tip which is drawn in graph of talysurf f(r) : error of stylus f(R) : dullness of tip which is drawn in graph of talysurf} 4. The graph of maximum error and profile of saw-tooth was parabola.

  • PDF

Lubrication Analysis of Infinite Width Slider Bearing with a Micro-Groove: Part 2 - Effect of Groove Depth (미세 그루브가 있는 무한폭 Slider 베어링의 윤활해석: 제2보 - 그루브 깊이의 영향)

  • Park, TaeJo;Jang, InGyu
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.382-388
    • /
    • 2019
  • It is currently well known that surface textures act as lubricant reservoirs, entrap wear debris, and hydrodynamic bearings, which can lead to certain increases in load-carrying capacities. Until recently, the vast majority of research has focused on parallel sliding machine components such as thrust bearings, mechanical face seals, piston rings, etc. However, most sliding bearings have a convergent film shape in the sliding direction and their hydrodynamic pressure is mainly generated by the wedge action. Following the first part of the present study that investigates the effect of groove position on the lubrication performances of inclined slider bearings, this paper focuses on the effects of groove depths and film thicknesses. Using a commercial computational fluid dynamics (CFD) code, FLUENT, the continuity and Navier-Stokes equations are numerically analyzed. The results show that the film thickness and groove depth have a significant influence on the pressure distribution. The maximum pressure occurs at the groove depth where the vortex is found and, as the depth increases, the pressure decreases. There is also a groove depth to maximize the supporting load with the film thickness. The friction force acting on the slider decreases with deeper grooves. Therefore, properly designed groove depths, depending on the operating conditions, can improve the load-carrying capacity of inclined slider bearings as compared to the bearings without a groove.

A Lubrication Design Optimization of Mechanical Face Seal (미케니컬 페이스 실의 유활 최적설계)

  • Choe, Byeong-Ryeol;Lee, An-Seong;Choe, Dong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2989-2994
    • /
    • 2000
  • A mechanical face seal is a tribo-element intended to control leakage of working fluid at the interface of a rotating shaft and its housing. Leakage of working fluid decreases drastically as the clearance between mating seal faces gets smaller. But the very small clearance may result in an increased reduction of seal life because of high wear and heat generation. Therefore, in the design of mechanical face seals a compromise between low leakage and acceptable seal life is important, ant it present a difficult and practical design problem. A fluid film or sealing dam geometry of the seal clearance affects seal lubrication performance very much, and thereby is optimization is one of the main design consideration. in this study the Reynolds equation for the sealing dam of mechanical face seals is numerically analyzed, using the Galerkin finite element method, which is readily applied to various seal geometries, to give lubrication performances, such as opening force, restoring moment, leakage, and axial and angular stiffness coefficients. Then, to improve the seal performance an optimization is performed, considering various design variables simultaneously. For the tested case the optimization ha successfully resulted in the optimal design values of outer and inner seal radii, coning, seal clearance, and balance radius while satisfying all the operation subjected constraints and design variable side-constraints, and improvements of axial and angular stiffness coefficients by 16.8% and 2.4% respectively and reduction of leakage by 38.4% have been achieved.

Upper Body Somatotype Classification and Discrimination of Elderly Women according to Index (지수치를 이용한 노년 여성의 상반신 체형 분류와 판별에 관한 연구)

  • 김수아;최혜선
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.7
    • /
    • pp.983-994
    • /
    • 2004
  • The aim of this study is to provide fundamental data on the development of ready-to-wear clothes appropriate for the body types of elderly women. The study was conducted targeting 318 elderly women over 60 years of age whose fields of action were colleges for the elderly, sports centers, or business sites in Seoul and the neighboring districts. A total of 44 features in the upper body were used for the anthropometric measurement and analysis using anthropometry and photometry. The results of the study are as follows: 1. Somatotypes were classified into three types according to a cluster analysis using height and weight indices. Type 1 is the group with long and undersized upper body and straight body type since the face of the upper body is long relative to height and width, girth and depth are the smallest relative to weight, the breasts are somewhat fat, with a small extent of drooping and a straight back. Type 2 is the group that is considered fat relative to the body, has broad shoulders, drooping breasts with a wide space between them, and a back-bent upper body. Type 3 is the group that has a bent shape, the shortest upper body relative to height, and showing average obesity factors. 2. Indices of height and weight were used for factor analysis, cluster analysis, and discriminant analysis in order to classify upper body somatotype according to shape while excluding size factors of elderly women's upper body somatotype. The same method was used to compare and verify the result according to the absolute measurement and height index. Classification based on height and weight indices demonstrate that such somatotype classification minimizes the personal equation of body shape and it induces better classification based on shape as the results showed the highest cumulative sum of square(CUSUM) at 78.38% while six factors showed the smallest result and the hit rate for the classified three groups showed the highest result at 95.30%.

Internal Flow Analysis of Seawater Cooling Pump using CFD (CFD를 이용한 해수냉각펌프의 내부유동 분석)

  • Bao, Ngoc Tran;Yang, Chang-jo;Kim, Bu-gi;Kim, Jun-ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.1
    • /
    • pp.104-111
    • /
    • 2017
  • This research focuses on simulation and visualization of flow field characteristics inside a centrifugal pump. The 3D numerical analysis was carried out by using a numerical CFD tool, addressing a Reynolds Average Navier-Stock code with a standard k-${\varepsilon}$ two-equation turbulence model. The simulation accounts for friction head loss due to rough walls at suction, impeller, discharge areas and volumetric head loss at impeller wear ring. A comparison of performance curves between simulation and experimentation is included, and it reveals a same trend of those results with a small difference of maximum 5 %. At best efficiency point, velocity vectors are smooth but it changes significantly under off-design point, a strong recirculation appears at the outlet of impeller passages near tongue area. A relatively uniform preassure distribution was observed around the impeller in despite of the tongue. Within the volute, because of its geometry, spiral vortexes formed, proving that the flow field in this region was relatively turbulent and unsteady.

Effect of the Pocket Depth on the Hammering Behavior of an Air Bearing Stage (포켓의 깊이가 공기 베어링 스테이지의 햄머링 현상에 미치는 영향)

  • Lee, Chun Moo;Kim, Gyu Ha;Park, Sang Joon;Hwang, Gyu-Jin;Park, Sang-Shin
    • Tribology and Lubricants
    • /
    • v.37 no.4
    • /
    • pp.129-135
    • /
    • 2021
  • An air-bearing stage uses externally pressurized air as the lubricant between the stage and the rail. The supporting force generated by the supplied air makes the stage rise and move smoothly with extremely low friction. Mechanical contacts rarely happen, the bearing surfaces do not produce wear particles, and dust is not generated. It also has the advantage of having low energy loss and high precision. Because of its advantages, an air-bearing stage is used in several types of machines that require high precision. In this article, the effect of the pocket depth on the hammering phenomena of the air bearing is studied. An analysis program is developed to calculate the dynamic behavior of the stage by solving the Reynolds equation between the stage and the guideway and the equations of motion on the stage. The acceleration, constant movement, and deceleration are applied to the stage. The stage is modeled as a five-degree-of-freedom system. In the course of the dynamic behavior, the hammering phenomena occur under some special conditions. The deeper the pocket, the more unstable the behavior of the stage, and air hammering occurs when it exceeds a certain depth. In addition, the higher the supply pressure, the more unstable the behavior of the stage. However, hammering occurs even with a shallow pocket depth. Other conditions that affect the hammering phenomena are calculated and discussed.