• 제목/요약/키워드: Wear Coefficient

검색결과 780건 처리시간 0.05초

마찰재에 함유된 금속섬유와 마찰 특성의 연관관계 (The Effect of Metal Fibers on the Tribology of Automotive Friction Materials)

  • 고길주;조민형;장호
    • Tribology and Lubricants
    • /
    • 제17권4호
    • /
    • pp.267-275
    • /
    • 2001
  • Friction and wear properties of brake friction materials containing different metal fibers (Al, Cu or Steel fibers) were investigated. Based on a simple experimental formulation, friction materials with the same amount of metal fibers were tested using a pad-on-disk type friction tester. Two different materials (gray cast iron and aluminum metal matrix composite (MMC)) were used for disks rubbing against the friction materials. Results front ambient temperature tests revealed that the friction material containing Cu fibers sliding against gray cast iron disk showed a distinct negative $\mu$-v (friction coefficient vs. sliding velocity) relation implying possible stick-slip generation at low speeds. The negative $\mu$- v relation was not observed when the Cu-containing friction materials were rubbed against the Al-MMC counter surface. Elevated temperature tests showed that the friction level and the intensity of friction force oscillation were strongly affected by the thermal conductivity and melting temperature of metallic ingredients of the friction couple. Friction materials slid against cast iron disks exhibited higher friction coefficients than Al-MMC (metal matrix composite) disks during high temperature tests. On the other hand, high temperature test results suggested that copper fibers in the friction material improved fade resistance and that steel fibers were not compatible with Al-MMC disks showing severe material transfer and erratic friction behavior during sliding at elevated temperatures.

Tribological Behaviors on nano-structured surface of the diamond-like carbon (DLC) coated soft polymer

  • 노건호;문명운;;차태곤;김호영;이광렬
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.356-356
    • /
    • 2010
  • Tribological behaviors of the hard film on soft substrate system were explored using the hard thin film of diamond-like carbon (DLC) coated the soft polymer of polydimethysiloxane (PDMS). A DLC film with the Young's modulus of 100 GPa was coated on PDMS substrate with Young's modulus of 10 MPa using plasma enhanced chemical vapor deposition (PECVD) technique. The deposition time was varied from 10 sec to 10 min, resulting in nanoscale roughness of wrinkle patterns with the thickness of 20 nm to 510 nm, respectively, at a bias voltage of $400\;V_b$, working pressure 10 mTorr. Nanoscale wrinkle patterns with 20-100 nm in width and 10-30 nm height were formed on DLC coating due to the residual stress in compression and difference in Young's modulus. Nanoscale roughness effect on tribological behaviors was observed by performing a tribo-experiment using the ball-on-disk type tribometer with a steel ball of 6 mm in diameter at the sliding speed of 220 rpm, normal load of 1N and 25% humidity at ambient temperature of $25^{\circ}C$. Friction force were measured with respect to thickness change of coated DLC thin film on PDMS. It was found that with increases the thickness of DLC coating on PDMS, the coefficient of friction decreased by comparison to that of the uncoated PDMS. The wear tracks before and after tribo-test were analyzed using SEM and AFM.

  • PDF

전단변형과 시간변화 이동자기력을 고려한 레일의 강제진동모델링 (Forced Vibration Modeling of Rail Considering Shear Deformation and Moving Magnetic Load)

  • 김준수;김성종;이혁;하성규;이영현
    • 대한기계학회논문집A
    • /
    • 제37권12호
    • /
    • pp.1547-1557
    • /
    • 2013
  • 시간변화 이동자기력이 작용하는 레일의 변형을 티모센코 보 이론(Timoshenko beam theory)로 가정하였으며, 보의 진동특성에 영향을 미치는 탄성체기초의 감쇠효과 및 강성을 고려하였다. 푸리에 급수와 수치해석을 이용해 강제진동모델의 동적응답과 임계속도를 구하였다. 레일의 진동모델을 유한요소 해석 및 오일러 보 이론(Euler beam theory)과 비교 검증하였다. 강제진동모델을 이용하여 레일의 영구변형을 예측하였으며, 실험결과 레일표면의 영구변형 및 마모를 확인하였다. 보의 설계변수인 레일의 형상, 재료, 탄성체 기초의 감쇠효과 및 강성이 레일의 임계속도 및 레일의 처짐, 축 방향 응력, 전단 응력에 미치는 영향에 대한 매개변수적 연구를 진행하였으며, 보의 설계방향을 얻을 수 있었다.

SiC 나노입자를 이용하여 형성한 Ni-SiC 복합도금막의 미세구조 및 특성 (Microstructure and Properties of Ni-SiC Composite Coating Layers Formed using Nano-sized SiC Particles)

  • 이홍기;손성호;이호영;전준미
    • 한국표면공학회지
    • /
    • 제40권2호
    • /
    • pp.63-69
    • /
    • 2007
  • Ni-SiC composite coating layers were formed using two kinds of SiC nano-particles by DC electrodeposition in a nickel sulfamate bath containing SiC particles. The effect of stirring rate and SiC particle type on the microstructure and properties of Ni-SiC composite coating layers were investigated. Results revealed that the trend of deposition rate is closely related to the codeposition of SiC and the deposition rate. or nickel, and the codeposition behavior of SiC can be explained by using hydrodynamic effect due to stirring. The average roughness and friction coefficient are closely related to the codeposition of SiC and SiC particle size. It was found that the Victors microhardness of the composite coating layers increased with increasing codeposition of SiC. The composite coating layers containing smaller SiC particle showed higher hardness. This can be explained by using the strengthening mechanism resulting from dispersion hardening. Anti-wear property of the composite coating layers formed using 130 nm-sized SiC nano-particles has been improved by 2,300% compared with pure electroplated-nickel layer.

오일리스 부시용 고체윤활제 개발 (Development of Solid Lubricants for Oil-less Bush)

  • 공호성;한흥구;김진욱;김경석;박종식
    • Tribology and Lubricants
    • /
    • 제35권2호
    • /
    • pp.87-93
    • /
    • 2019
  • This work aims to develop a dry lubricant for oilless bush, especially a solid lubricant, thereby creating a coating method with improved properties of anti-friction and load-carrying capacity without oil lubrication. In this work, spherical-shaped powders of thermosetting resin such as polyimide (PI) are mixed with a binder matrix obtained by mixing a fluorocarbon compound resin such as Polytetrafluoroethylene (PTFE) or Ethylene tetra fluoro ethylene (ETFE) with itself or with a non-fluorocarbon thermoplastic resin such as Polyether ether ketone (PEEK). And these dry lubricant mixtures are thickly coated (200-300 mm in the thickness) on the inner surface of the bush by using a wet-typed air-spray deposition method. It was found that the load-carrying capacity of the solid lubricant for excavator bush (60 mm in diameter) that operates under a high load condition (at 40 MPa) is greatly improved owing to the spherical-shaped powders of thermosetting resin. In addition, the coefficient of friction at the sliding surface is also reduced less than 0.1. Thick coating also lowers the contact stress at the edge of a bush that results in better tribological performances. The result suggests that the lubrication performance and durability life of the bush can be remarkably improved even without lubrication (oil or grease).

Effects of Muscle Thickness of Masseter and Sternocleidomastoid, Forward Head Posture and Breathing in Subjects With and Without Dentures

  • Kim, Se-Yeon;Kim, Ki-Song;Hwang, Young-In
    • 한국전문물리치료학회지
    • /
    • 제29권4호
    • /
    • pp.255-261
    • /
    • 2022
  • Background: For the elderly, masticatory function is one of the most important oral functions and the masticatory ability is related to the wearing of dentures. Many older people wear dentures for their masticatory function, but a significant number of older people who use dentures have found that they feel uncomfortable when performing their daily activities, such as performing masticating functions or talking. Objects: The purpose of this study is to investigate how the forward head posture (FHP), respiratory function and thickness of masseter (MS), and sternocleidomastoid (SCM) are affected by the presence or absence of dentures in the elderly, and what kind of correlation there is between these variables. Methods: The study was conducted on 11 patients in the normal group and 13 in the denture group. The participant's cognitive ability was evaluated using Mini-Mental State Examination Korean (MMSE-K), and the FHP was evaluated by measuring the craniovertebral angle (CVA). The thickness of the MS and SCM muscles were measured using ultrasound, and respiration was measured with a spirometry. As for the statistical method, the correlation of each variable was investigated using Spearman's correlation coefficient. Results: In the normal group, there was a significant correlation between forced vital capacity (FVC) and forced expiratory volume in 1 second (FEV1) (p < 0.001), and in the denture group, FVC and FEV1 (p < 0.001), maximal inspiratory pressure (MIP) and maximal expiratory pressure (MEP) (p < 0.001), CVA and Lt. MS (p = 0.012). Conclusion: CVA and Lt. MS of the denture group have a high negative correlation, it is related that the thickness of MS may be thick when the elderly wearing dentures are FHP.

Shear behavior of foam-conditioned gravelly sands: Insights from pressurized vane shear tests

  • Shuying Wang;Jiazheng Zhong;Qiujing Pan;Tongming Qu;Fanlin Ling
    • Geomechanics and Engineering
    • /
    • 제34권6호
    • /
    • pp.637-648
    • /
    • 2023
  • When an earth pressure balance (EPB) shield machine bores a tunnel in gravelly sand stratum, the excavated natural soil is normally transformed using foam and water to reduce cutter wear and the risk of direct muck squeezing out of the screw conveyor (i.e., muck spewing). Understanding the undrained shear behavior of conditioned soils under pressure is a potential perspective for optimizing the earth pressure balance shield tunnelling strategies. Owing to the unconventional properties of conditioned soil, a pressurized vane shear apparatus was utilized to investigate the undrained shear behavior of foam-conditioned gravelly sands under normal pressure. The results showed that the shear stress-displacement curves exhibited strain-softening behavior only when the initial void ratio (e0) of the foam-conditioned sand was less than the maximum void ratio (emax) of the unconditioned sand. The peak and residual strength increased with an increase in normal pressure and a decrease in foam injection ratio. A unique relation between the void ratio and the shear strength in the residual stage was observed in the e-ln(τ) space. When e0 was greater than emax, the fluid-like specimens had quite low strengths. Besides, the stick-slip behavior, characterized by the variation coefficient of measured shear stress in the residual stage, was more evident under lower pressure but it appeared to be independent of the foam injection. A comparison between the results of pressurized vane shear tests and those of slump tests indicated that the slump test has its limitations to characterize the chamber muck fluidity and build the optimal conditioning parameters.

다이아몬드 피복공구에 의한 SiC 강화 복합재료의 절삭특성 (Machining Characteristics of SiC reinforced Composite by multiple diamond-coated drills)

  • M. Chen;Lee, Y. M.;S. H. Yang;S. I. Jang
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.533-537
    • /
    • 2003
  • Compared to sintered polycrystalline diamond (PCD), the deposited thin film diamond has a great advantage on the fabrication of cutting tools with complex geometries such as drills. Because of high performance in high speed machining non-ferrous difficult-to-cut materials in the field of automobiles industry, aeronautics and astronautics industry, diamond-coated drills find large potentialities in commercial applications. However, the poor adhesion of the diamond film on the substrate and high surface roughness of the drill flute adversely affect the tool lift and machining quality and they become the main technical barriers for the successful development and commercialization of diamond-coated drills. In this paper, diamond thin films were deposited on the commercial WC-Co based drills by the electron aided hot filament chemical vapor deposition (EACVD). A new multiple coating technology based on changing gas pressure in different process stages was developed. The large triangular faceted diamond grains may have great contribution to the adhesive strength between the film and the substrate, and the overlapping ball like blocks consisted of nanometer sized diamond crystals may contribute much to the very low roughness of diamond film. Adhesive strength and quality of diamond film were evaluated by scanning electron microscope (SEM), atomic force microscope (AFM), Raman spectrum and drilling experiments. The ring-block tribological experiments were also conducted and the results revealed that the friction coefficient increased with the surface roughness of the diamond film. From a practical viewpoint, the cutting performances of diamond-coated drills were studied by drilling the SiC particles reinforced aluminum-matrix composite. The good adhesive strength and low surface roughness of flute were proved to be beneficial to the good chip evacuation and the decrease of thrust and consequently led to a prolonged tool lift and an improved machining quality. The wear mechanism of diamond-coated drills is the abrasive mechanical attrition.

  • PDF

MODIFICATION OF METAL MATERIALS BY HIGH TEMPERATURE PULSED PLASMA FLUXES IRRADIATION

  • Vladimir L. Yakushin;Boris A. Kalin;Serguei S. Tserevitionov
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2000년도 춘계학술발표회 초록집
    • /
    • pp.1-1
    • /
    • 2000
  • The results of the modification of metal materials treated by high temperature pulst:d plasma fluxes (HTlPPF) with a specific power of incident flux changing in the $(3...100)10^5{]\;}W/cm^2$ range and a pulse duration lying from 15 to $50{\;}\mu\textrm{s}$ have been presented. The results of HTPPF action were studied on the stainless steels of 18Cr-l0Ni, 16Cr- 15Ni, 13Cr-2Mo types; on the structural carbon steels of (13...35)Cr, St. 3, St. 20, St. 45 types; on the tool steels of U8, 65G, ShHI5 types, and others; on nickel and high nickel alloy of 20Cr-45Ni type; on zirconium- and vanadium-base alloys and other materials. The microstructure and properties (mechanical, tribological, erosion, and other properties) of modified materials and surface alloying of metals exposed to HTPPF action have been investigated. It was found that the modification of materials by HTPPF resulted in a simultaneous increase of several properties of the treated articles: microhardness of the surface and layers of 40...60 $\mu\textrm{m}$ in depth, tribological characteristics (friction coefficient, wear resistance), mechanical properties ({\sigma_y}, {\;}{\sigma_{0.2}}.{\;}{\sigma_r}) on retention of the initial plasticity ($\delta$), corrosion resistance, radistanation erosion under ion irradiation, and others. The determining factor of the changes observed is the structural-phase modification of the near-surface layers, in particular, the formation of the fine cellular structure in the near-surface layers at a depth of $20{\;}{\mu\textrm{m}}$ with dimension of cells changing in the range from 0.1 to $1., 5{\;}\mu\textrm{m}$, depending on the kind of material, its preliminary treatment, and the parameters of plasma fluxes. The remits obtained have shown the possibility of purposeful surface alloying of metals exposed to HTPPF action over a depth up to 20...45 $\mu\textrm{m}$ and the concentration of alloying element (Ni, Cr, V) up to 20 wt.%. Possible industrial brunches for using the treatment have been also considered, as well as some results on modifying the serial industrial articles by HTPPF.

  • PDF

구치부 레진 수복 재료의 가수분해 (HYDROLYTIC DEGRADATION OF POSTERIOR RESIN RESTORATIVE MATERIALS)

  • 양규호;박미란;최남기;박은혜
    • 대한소아치과학회지
    • /
    • 제28권4호
    • /
    • pp.673-682
    • /
    • 2001
  • 우수한 심미성 수복재료로서 복합레진은 그 사용 빈도가 증가하고 있다. 이런 증가 추세에도 불구하고 복합레진의 부적절한 마모저항성 때문에 구치부 수복에서의 사용이 제한되어왔다. 이와 관련된 인자로 수복물의 표면하 분해가 고려되고 있다. 본 연구에서는 복합레진의 마모에 미치는 환경적 분해의 효과를 알기 위해 알카리성 용액(0.1N NaOH)에 현재 많이 사용되는 Definite($Degussa-H\ddot{u}ls$ AG, Germany), Prodigy(Kerr, USA), Pyramid(Bisco, USA) 및 Synergy(Coltene, Swiss) 등 4종의 복합레진을 보관하였을 때 각 제품의 분해과정을 평가하고자 하였다. 각 제품 당 3개의 시편을 제작한 후 0.1N NaOH용액에 저장하여 $60^{\circ}C$에서 보관하였다. 2주 후 제거하여 HCl로 중화, 세척 후 $60^{\circ}C$에서 건조하였다. 무게 손실, 분해층 깊이, Si농도 등을 기준으로 분해저항성을 평가하여 다음과 같은 결과를 얻었다. 1. 무게 손실은 Synergy에서 $1.24{\pm}0.002%$로 가장 높은 값을 보였으나 각 제품간 유의한 차이는 보이지 않았다. 2. 분해층 깊이는 Synergy에서 $107.83{\pm}2.52{\mu}m$로 가장 높은 값을 보였고, Synergy를 제외한 다른 제품에서는 유의한 차이를 보이지 않았다. 3. Si 용출량에 있어서는 4가지 제품 모두 차이를 보이지 않았다. 4. 무게 손실과 분해층 깊이 사이에는 높은 상관 관계를 보였다(r=0.6127, p<0.05). 5. 무게 손실과 Si 용출량, 분해층 깊이와 Si 용출량 사이에 상관 관계는 없는 것으로 나타났다. 6. 주사전자현미경 관찰시 NaOH 용액에 보관한 후 레진 기질과 필러 사이의 결합 파괴를 관찰할 수 있었다.

  • PDF