• 제목/요약/키워드: Wear Coefficient

검색결과 778건 처리시간 0.025초

고성능 금속마찰재의 트라이볼로지적 특성 (Tribological Characteristics for High Perfomance Metallic Friction Materials)

  • 김석삼;김재호;안효준
    • Tribology and Lubricants
    • /
    • 제14권1호
    • /
    • pp.45-53
    • /
    • 1998
  • Friction and wear test for two kinds of Cu-based sintered metallic friction material against cast iron disk was carried out by plate-on-disk type friction and wear tester to investigate the friction and wear characteristics of brake system in severe condition. In this experimental study, the counter specimen was cast iron which is being used generally in brakes of heavy duty equipments. Test friction materials were A type which was manufactured by foreign company and B type by domestic company. Friction coefficient and wear volume were measured and compared with each other. The experiment was performed under room temperature. The worn surface of cast iron disk and friction material were observed by scanning electron microscope. The temperature of surface of disk was measured continuously by the non-contacting thermometer. It was found that A type friction material had stable friction coefficient over the wide range of sliding condition, but B type friction material had unstable friction coefficient and lower value of 0.2 under the severe sliding condition.

무급유 공기압축기용 복합재료 피스턴링의 마찰마모 특성에 관한 연구 (A Study on the Friction and Wear Property of Composite Piston Ring for Oil Free Air Compressor)

  • 김용직;정하돈;김윤해
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.766-771
    • /
    • 2000
  • This study is mainly concerned with friction and wear properties for the piston ring of non-lubricating air compressor which made of PTFE-polyimide composites. At the PTFE and polyimide alone mixture specimens, PTFE80%-polyimide20%, which shows the lowest men friction coefficient and specific wear rate at 0.94m/s sliding speed. At each of carbon, copper and oxide lopper mixed with PTFE80%-polyimide20%. In case of copper10%, at 0.94m/s sliding speed, the mean friction coefficient shows 0.087, which is the lowest value in all specimens. In case of the specific wear rate, copper30% specimen shows the lowest value of $2.537E-5(mm^3/Nm)$ in all specimens.

  • PDF

반응소결 탄화규소의 접동조건에 따른 마찰계수 및 미세구조 (Friction Coefficient and Microstructure of Reaction-Bonded Silicon Carbide According to Sliding Conditons)

  • 김호균;김인섭;이병하
    • 한국세라믹학회지
    • /
    • 제32권7호
    • /
    • pp.825-831
    • /
    • 1995
  • Reaction-bonded SiC-Si material was fabricated by infiltration of Si melt into a mixture of $\alpha$-SiC and carbon at 175$0^{\circ}C$ under the vacuum atmosphere. Wear properties were analyzed by ball-on-plate wear tester, changing loading weight, sliding speed, sliding time and atmosphere, Results showed that the friction coefficient was decreased with increasing load and sliding velocity. The lowest friction coefficient of 0.05 was obtained under an oil atmosphere. The analysis of the wear surface indicated that the areas wehre particles were pulled out and where free silicon particles worn out preferentially serve as liquid reservoirs to decrease the wear resistance.

  • PDF

탄소섬유복합재의 표면개질에 따른 트라이볼로지 특성에 관한 연구 (Tribological Characteristics of Carbon Fiber Reinforced Plastics by Surface modification)

  • 전승흥;양준호;오성모;이봉구
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제32회 추계학술대회 정기총회
    • /
    • pp.29-36
    • /
    • 2000
  • This investigation has been studied about friction and wear properties which were important problem, when carbon fiber reinforced plastic(CFRP) was used practically. Unidirection carbon fiber reinforced composites was fabricated with epoxy resin matrix and carbon fiber as a reinforced, and its surface was modified by the ion-assisted reaction. And then we tested the their friction and wear properties according to the ion-irradiation. when the amount of ion-irradiation was 1${\times}$10l6$\^$16/ ions/$\textrm{cm}^2$, the friction coefficient values were about 0.1, where as, the friction coefficient values of non-treatment composites were about 0.16. The former was the stablest in wear mode. We know that ion-irradiation was not proportioned to the friction coefficient, so we found the optimal conditions of the friction and wear according to the ion-irradiation.

  • PDF

소결 마찰재의 마찰특성에 미치는 고체 윤활제의 영향 (The effect of solid lubricant on the frictional characteristics of Cu base sintered friction material.)

  • 정진현;이범주;조정환;정동윤;권석진
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1996년도 제24회 춘계학술대회
    • /
    • pp.45-54
    • /
    • 1996
  • The effect of graphite on the frictional characteristics of Cu-based sintered friction materials was studied by pin-on-disk type wear test. A study has been carried out concerning the optimum concentration of graphite in sintered friction material to obtain the minimum wear rate and low friction coefficient . Friction coefficient and wear rate were increased as increasing the content of graphite in the matrix. In the study the optimum concentration of graphite was 19vol % to get the minimum wear rate and optimal frick'ion coefficient.

  • PDF

SUS 304에 대한 Inconel 600의 Sliding 마모거동 (The Sliding Wear Behavior of Inconel 600 Mated with SUS 304)

  • 김훈;최종현;김준기;박기성;김승태;김선진
    • 한국재료학회지
    • /
    • 제11권10호
    • /
    • pp.841-845
    • /
    • 2001
  • The steam generator tubes of power plant damaged by sliding wear due to flow-induced motion of foreign object. Amount of wear have been predicted by Achard's wear equation until now. However, there are large error and low reliability, because this equation regards wear coefficient(k) as constant. The sliding wears tests have been performed at room temperature to examine parameters of wear (wear distance, contact stress). The steam generator tube material for wear test is used Inconel 600 and foreign object material is used 304 austenite stainless steel. The sliding wear tests show that the amount of wear is not linearly proportional to the wear distance(for 374 austenite stainless steel). According to experimental result, wear coefficient is not constant k but function k(s) of wear distance. The newly modified wear predictive equation V=k(s)F have small error and high reliability.

  • PDF

마멸입자가 운동이력이 다른 금속재료의 마찰 마멸현상에 미치는 영향

  • 황동환;김대은;이상조
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.807-810
    • /
    • 1995
  • The effects of weae particles on the friiction and wear behavior of metals in dry sliding conditions are presented. The tribological test were performed using pure metal specimens which were selected based on their degrees of compatibility and hardness ratio. Friction and wear experiments were conducted using both pin-on-disk and reciprocating pin-on-plate type tribotesters to investigate the effect of motion history. Experimental results show that in the case of dry sliding the frictional behavior observed during pin-on-disk test differed form that of pin-on-reciprocator test for the given set of material pairs. The friction coefficient and wear rate were found to be higher for the pin-on-disk tests. It is suspected that the sliding motion of the pin affects the wear particle dynamics, which in turn influences the frictional behavior. The effect of material pair properties seemed to be relatively smaller than that of wear particles. The results of this paper is expected to aid in the design of mechanical systems for best tribological performance.

  • PDF

지르코늄 합금 튜브의 산화와 프레팅 마멸 특성 (Oxidation and Fretting Wear Characteristics of Zirconium Alloy Tubes)

  • 정일섭;이호성;이명호
    • Tribology and Lubricants
    • /
    • 제25권4호
    • /
    • pp.250-255
    • /
    • 2009
  • Oxidation characteristics of Zirlo and Zircaloy-4 tubes, which are widely used as nuclear power fuel cladding, are studied in steam environment up to $1200^{\circ}C$. Oxidation resistances are compared in terms of the mass increase due to the absorption of oxygen. The evolution of microscopic structure accompanied with the oxidation process is investigated. Also, the influence of oxidation on the fretting wear characteristics of the tubes is studied. Piezo-electrically actuated rig is employed to fret the tubes with cross-contacting arrangement. Wear scar is observed and measured, by using microscopes and a 3D-profiler. The results of fretting wear are quantified in terms of scar size, wear volume and wear coefficient, and compared for the three different tube materials of oxidated Zirlo, virgin Zirlo and Zircaloy-4.

경사선로에서의 차륜과 레일간 상호작용에 따른 마모 현상 연구 (The research on wear simulation between wheel and rail at inclined of Korea High Speed Railway)

  • 문태선;서보필;최정흠;한동철
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2003년도 학술대회지
    • /
    • pp.112-117
    • /
    • 2003
  • The purpose of this work is to general approach to numerically simulating wear in rolling and sliding contact area between wheel and rail interface based on the analysis of dynamics with general MBS package. A simulation scheme is developed that calculates the wear at a detailed level. The estimation of material removal follows Archard's wear equation which states that the reduction of volume is linearly proportional to the sliding distance, the normal applied load and the wear coefficient and inverse proportional to hardness. The main research application is the wheel-rail contact of Korea High Speed Railway.

  • PDF

하중변화에 따른 GF/PUR 복합재료의 연삭마모특성 (Effect of load upon the abrasive wear characteristics of glass fiber reinforced polyurethane composites)

  • 고성위
    • 수산해양기술연구
    • /
    • 제46권4호
    • /
    • pp.495-502
    • /
    • 2010
  • The effect of load and sliding speed on abrasive wear characteristics of glass fiber/polyurethane (GF/PUR) composites were investigated at ambient temperature by pin-on-disc friction test. The friction coefficient, cumulative wear volume and surface roughness of these materials against SiC abrasive paper were determined experimentally. Experimental results showed that the surface roughness of the GF/PUR composites was increased as applied load was higher in wear test. The cumulative wear volume tended to increase nonlinearly with increase of sliding distance and depended on applied load and sliding speed for these composites. It could be verified by scanning electric microscopy (SEM) photograph of surface tested that major failure mechanisms were lapping layers, ploughing, delamination, deformation of resin and cracking.