• Title/Summary/Keyword: Wear

Search Result 7,506, Processing Time 0.029 seconds

Numerical Wear Analysis of a Three-dimensional Rough Surface (수치적 방법을 이용한 3차원 거친 표면의 마모 해석)

  • Kim, Yunji;Suh, Junho;Kim, Bongjun;Yu, Yonghun
    • Tribology and Lubricants
    • /
    • v.36 no.4
    • /
    • pp.232-243
    • /
    • 2020
  • It is essential to predict the amount of wear and surface parameters for a surface where relative motion occurs. In the asperity-based model for wear prediction, only the average contact pressure can be obtained. Hence, the accuracy of wear analysis is poor. In this study, DC-FFT is used to obtain the pressure of each node, and wear analysis is performed by considering the effect of the pressure gradient. The numerical surface generation method is used to create Gaussian, negatively skewed, and positively skewed surfaces for wear analysis. The spatial and height distributions of each surface are analyzed to confirm the effectiveness of the generated surface. Furthermore, wear analysis is performed using DC-FFT and Archard's wear formula. After analysis, it is confirmed that all peaks are removed and only valleys remain on the surface. The RMS roughness and Sk continue to decrease and Ku increases as the cycle progresses. It is observed that the surface parameters are significantly affected by the radius of curvature of the asperity. This analysis method is more accurate than the existing average wear and truncation models because the change in asperity shape during the wear process is reflected in detail.

The Assessment of Ceramic Wear by the Parameter Scf (Scf 파라메타에 의한 세라믹 마멸 평가)

  • 김상우;김석삼
    • Tribology and Lubricants
    • /
    • v.12 no.1
    • /
    • pp.56-65
    • /
    • 1996
  • The result of wear test for ceramic materials was assessed by Scf parameter to verify the usefulness of the proposed Scf parameter. Friction and wear tests were carried out with ball on disk type. The materials used in this study were HIPed Alumina $(Al_2O_3)$, Silicon carbide (sic), Silicon nitride $(Si_3N_4)$ and Zirconia $(ZrO_2)$. The tests were carried out at room temperature with self mated couples of ceramic materials under lubricated condition. Turbine oil was used as a lubricant. In this test, increasing the load, specific wear rates and wear coefficients of four kinds of ceramic materials had a tendency to increase. The wear coefficients of ceramic materials were in order of $Al_2O_3, SiC, Si_3N_4, ZrO_2$. Worn surfaces investigated by SEM had residual surface cracks and wear particles caused by brittle fracture. As the fracture toughness of ceramic materials was higher, wear resistance more increased. The roughness of worn surface had correlation with wear rate. The wear rate(W$_{s}$) and Scf parameter showed linear relationship in log-log coordinates and the wear equation was given as $W_s = 5.52 $\times$ Scf^{5.01}$.

Wear Behaviors of Gas Atomized and Extruded Hypereutectic Al-Si Alloys (가스분무 공정에 의한 과공정 Al-Si 합금 분말 압출재의 마모 거동)

  • Jin Hyeong-Ho;Nam Ki-Young;Kim Yong-Jin;Park Yong-Ho;Yoon Seog-Young
    • Journal of Powder Materials
    • /
    • v.13 no.4 s.57
    • /
    • pp.250-255
    • /
    • 2006
  • Wear behaviors of gas atomized and extruded Al-Si alloys were investigated using the dry sliding wear apparatus. The wear tests were conducted on Al-Si alloy discs against cast iron pins and vice versa at constant load of 10N with different sliding speed of 0.1, 0.3, 0.5m/s. In the case of Al-Si alloy discs slid against the cast iron pins, the wear rate slightly increased with increasing the sliding speed due to the abrasive wear occurred between Al-Si alloy discs and cast iron pins. Conversely, in the case of cast iron discs against Al-Si alloy pins, the wear rate decreased with increasing the sliding speed up to 0.3m/s. However, the wear rate increased with increasing the sliding speed from 0.3m/s to 0.5m/s. It could be due to adhesive wear behavior and abrasive wear behavior_between cast iron discs and Al-Si alloy pins.

A Study on Engine Oil Consumption Considering Wear of Piston-Ring and Cylinder Bore (피스톤-링 및 실린더 보아 마모를 고려한 엔진오일소모 연구)

  • Chun, Sang-Myung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.143-150
    • /
    • 2007
  • Ring and cylinder bore wear may not be a problem in most current automotive engines. However, a small change in ring face and cylinder bore diameter can significantly affect the lubrication characteristics and ring axial motion. This in turn can cause to change inter-ring pressure, blow-by and oil consumption in an engine. Therefore, by predicting the wear of piston ring face and cylinder bore altogether, the changed ring end gap and the changed volume of gas reservoir can be calculated. Then the excessive oil consumption can be predicted. Here, the oil amount through top ring gap into combustion chamber is estimated as engine oil consumption. Furthermore, the wear theories of ring and cylinder bore are included. The changed oil consumption caused by the new end gap and the new volume of oil reservoir around second land, can be calculated at some engine running interval. Meanwhile, the wear amount and oil consumption occurred during engine durability cycle are compared with the calculated values. The wear data of rings and cylinder bore are obtained from three engines after engine durability test. The calculated wear data of each part are turn out to be around the band of averaged test values or a little below. It is shown that the important factor regarding oil consumption increasement is the wear of ring face.

Wear Behavior of WC-12%Co/Low Carbon Steel Metal Matrix Composites(MMC) Welding Overlay (WC-12%Co/저탄소강 MMC 용접 오버레이의 마모거동)

  • 임희식;김태형;박경채
    • Journal of Welding and Joining
    • /
    • v.21 no.2
    • /
    • pp.42-49
    • /
    • 2003
  • The protection of steel surfaces against wear is a practical problem far agricultural, mining and manufacturing industries. Commercial processes are available in which a hard tungsten carbides rich steel layer is formed on the surface of carbon steel digging, drilling and gouging tools to improve their wear resistance. The nature of the interaction of the tungsten carbide with the steel matrix is important in determining the wear and corrosion properties of the resulting metal matrix composites(MMC). In the study, WC-12%Co/low carbon steel MMC overlays have been prepared by gas metal arc welding(GMAW) according to size of WC-12%Co grits. The characteristics wear resistance and wear mechanism have been investigated in relation to the experiment conditions each other. After MMC overlay had been tested by rubber wheel abrasion test, it was known that MMC overlay has a excellent wear resistance. Fe$_{6}$W$_{6}$C carbides of matrix in overlays were not important to restrain rubber wheal abrasion wear. Wear loss is proportioned to a applied load according to time. On the case of low load, wear occurred severely in the matrix of overlay more than WC-12%Co grit, on the contrary it is reverse on the case of high load because of fracture of WC-12%Co grits.its.

Consumer Perceptions, Evaluations and Attributes of Outdoor Wear Differentiation (아웃도어웨어 차별화에 대한 인식, 평가 및 차별화 속성)

  • Yoo, Hwa-Sook
    • Fashion & Textile Research Journal
    • /
    • v.18 no.1
    • /
    • pp.27-37
    • /
    • 2016
  • This study examined consumer perceptions towards outdoor wear differentiation and product attributes for outdoor wear differentiation to develop an outdoor wear differentiation strategy. It also investigated how consumer's evaluated product attributes according to consumer's demographic characteristics. Data were acquired from a survey of 454 adult respondents aged over 20 that was analyzed with descriptives, frequency, t-test, one-way ANOVA, factor analysis, and reliability. The results were as follows. First, it showed that consumers did not have a positive or a negative perception toward outdoor wear differentiation, and they thought outdoor wear should be differentiated. Those married and older tended to think that outdoor wear should be differentiated more than that for those single and younger. Consumer evaluations were significantly different on the necessity of outdoor wear differentiation according to age and total income. Second, consumers assessed that color, pattern and textiles had similar characteristics among outdoor wear brands; in addition, brand recognition and brand image had very different characteristics. Third, product attributes for outdoor wear differentiation were service and store, product quality, brand and popularity, and product designs with mean values of product quality, product design, service and store, and brand and popularity, respectively. Fourth, consumers were significantly different in the importance assessment of product attributes for differentiation according to gender, marital status and age.

3D Wear Analysis of Valve Assemblies by Using the Machine Vision (머신비전을 이용한 밸브어셈블리의 3차원 마멸특성 분석)

  • Park Chang-Woo;Chung Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.496-504
    • /
    • 2006
  • Wear of engine valves and seat inserts is a major factor affecting engine performance. In order to improve quality and life of valve assemblies, wear mechanism and 3-D surface topography should be analyzed according to operating conditions of the engine. After developing an engine simulator that generates valve speed up to 90Hz and temperature up to $900^{\circ}C$ as well as controls test load, wear experiments have been conducted for two different engine speeds as 10Hz and 25Hz. In order to observe the wear characteristics and monitor surface conditions of the valve assemblies, a cost-effective 3-D wear analysis system based on the shape from focus(SFF) and machine vision has been fabricated in this paper. 3-D surface topography of the valve assemblies has been analyzed to understand the wear behavior according to operating conditions of the engine. Consequently, wear volume of the valve assemblies is quantized by using the developed 3-D wear analysis system.

Friction-Wear Properties of Carburized SNCM (침탄처리한 Ni-Cr-Mo강의 마찰-마모특성)

  • Baek, Seung Ho
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.3
    • /
    • pp.159-167
    • /
    • 1998
  • In this study, friction-wear test was carried out on the carburized layer depth of a mechanical structure steel SNCM carburized with RX and LPG for 7hrs at $930^{\circ}C$ and also the wear properties of wear loss, wear rate, coefficient of friction, friction force and friction temperature were investigated. The wear properties for carburized layer of SNCM were tested on dry condition at the room temperature by the thrust load of 49~245N range at sliding speed of 0.2m/sec and the sliding speed of 0.2~1.0m/sec range at thrust load of 98N. Wear loss on the depth of carburizing layer was increased with increasing of thrust load and sliding speed, and with decreasing of hardness. The condition of worn surfaces were showed mild wear at less than the thrust load of 98N and sliding speed of 0.6m/sec but were showed severe wear at more than 98N and 0.6m/sec. The friction load and temperature were increased with increasing of thrust load but with increasing sliding speed was appeared minimum at 0.6m/sec. With increasing thrust load the wear rate was increased and the coefficient of friction was decreased, but with increasing sliding speed the wear rate and the coefficient of friction were decreased in 0.2~0.6m/sec and increased in 0.6~1.0m/sec, therefore 0.6m/sec in this testing is a transition velocity.

  • PDF

Wear Characteristics of Multi- span Tube Due to Turbulence Excitation (다경간 전열관의 난류 가진에 의한 마모특성 연구)

  • Kim, Hyung-Jin;Sung, Bong-Zoo;Park, Chi-Yong;Ryu, Ki-Whan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.904-911
    • /
    • 2006
  • A modified energy method for the fretting wear of the steam generator tube is proposed to calculate the wear-out depth between the nuclear steam generator tube and its support. Estimation of fretting-wear damage typically requires a non-linear dynamic analysis with the information of the gap velocity and the flow density around the tube. This analysis is very complex and time consuming. The basic concept of the energy method is that the volume wear rate due to the fretting-wear phenomena Is related to work rate which is time rate of the product of normal contact force and sliding distance. The wearing motion is due to dynamic interaction between vibrating tube and its support structure, such as tube support plate and anti-vibration bar. It can be assumed that the absorbed work rate would come from turbulent flow energy around the vibrating tube. This study also numerically obtains the wear-out depth with various wear topologies. A new dissection method is applied to the multi-span tubes to represent the vibrational mode. It turns out that both the secondary side density and the normal gap velocity are important parameters for the fretting-wear phenomena of the steam generator tube.

Friction and Wear Behavior of Carbon/carbon Composite Materials and its Application to a Neural Network (탄소/탄소 복합재료의 마찰 및 마모 거동과 신경회로망에의 적용에 관한 연구)

  • 류병진;윤재륜;권익환
    • Tribology and Lubricants
    • /
    • v.10 no.4
    • /
    • pp.13-26
    • /
    • 1994
  • Effects of resin contents, number of carbonization, graphitization, sliding speed, and oxidation on friction and wear behavior of carbon/carbon composite materials were investigated. Friction and wear tests were carried out under various sliding conditions. An experimental setup was designed and built in the laboratory. Stainless steel disks were used as the counterface material. Friction coefficient, emperature, and wear factor were measured with a data acquisition system. Wear surfaces were observed by the scanning electron microscope. It has been shown that the average friction coefficient was increased with the sliding speed in the range of 1.43~6.10 m/s, but it as decreased in the range of 6.10~17.35 m/s. Specimens prepared by different numbers of carbonization. showed variations in friction coefficient and friction coefficient of the graphitized specimen was the highest. Friction coefficients depended on contribution of the plowing and adhesive components. As the number of carbonization was increased, wear factor was reduced. Wear factor of the graphitized specimens dropped further. In the case of graphitized specimens, sliding speed had a large influence on wear behavior. When the tribological experiments were conducted in nitrogen atmosphere, the wear factor was decreased to two thirds of the wear factor obtained in air. It is obvious that the difference was affected by oxidation. Results of friction and wear tests were applied to a neural network system based on the backpropagation algorithm. A neural network may be a valuable tool for prediction of tribological behavior of the carbon/carbon composite material if ample data are present.