• Title/Summary/Keyword: Weapon

Search Result 1,439, Processing Time 0.025 seconds

Comparison of the Priority of Required Capabilities of the Warrior Platform by the Types of Military Unit through AHP Analysis (AHP 분석을 통한 부대 임무유형별 워리어플랫폼 요구능력 우선순위 비교)

  • Kim, Wukki;Shin, Kyuyong;Jo, Seongsik;Baek, Seungho;Kim, Yongchul
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.6
    • /
    • pp.262-269
    • /
    • 2021
  • The Ministry of National Defense is re-establishing the role of the Army in accordance with the defense reform and is promoting the Warrior Platform, a next-generation individual combat system. The Warrior Platform project is divided into three stages and is being promoted. In the first stage, the quality and performance of individual items are improved, in the second stage, items between system development are integrated, and in the third stage, the combat capability is maximized by developing an integrated unit weapon system. In this paper, detailed sub-items for the five essential required competencies (survival, lethality, mobility, sustainability, Communication) that are considered for building an effective warrior platform are presented. We also present a plan that can be used to prepare a specific master plan for the Army's Warrior Platform project by using Analytic Hierarchy Process(AHP) and selecting the priority of the five required capabilities and detailed sub-items for different unit types. As a result of analyzing the priorities of the four types of units with different mission types, we find that there are differences for each unit. These results are expected to be used as useful reference materials for setting the future direction for the development of warrior platform.

A Study of Shelf Life about Li-ion Battery (리튬 2차 전지의 저장 수명에 관한 연구)

  • Kim, Dong-seong;Jin, Hong-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.339-345
    • /
    • 2020
  • In the field of defense, one-shot devices such as missiles are stored for a long period of time after they are manufactured, so it is essential to predict their storage life. A study was conducted to find the shelf life of a Li-ion battery used in one-shot devices. To do this, a Li-ion battery that has been used in weapon systems for more than 5 years was secured. A non-functional test was performed on the battery to check for external changes or failures. After the non-functional test, a discharge test was performed to measure the performance after storing it. Through the test, the performance was checked, including the initial charging voltage, discharge time, and battery temperature, and the trend of the change was identified. An F-test, One-way ANOVA, and regression analysis were performed to verify the aging, and the shelf life of the battery was estimated by an approximation formula that was derived through a regression analysis. As a result of the ANOVA, the p-value was less than the reference value of 0.05, and the performance of the battery decreased by more than 15% after a certain period of time. This change is assumed to result from the change in physical properties of the lithium polymer cell.

Development of a DEVS Simulator for Electronic Warfare Effectiveness Analysis of SEAD Mission under Jamming Attacks (대공제압(SEAD) 임무에서의 전자전 효과도 분석을 위한 DEVS기반 시뮬레이터 개발)

  • Song, Hae Sang;Koo, Jung;Kim, Tag Gon;Choi, Young Hoon;Park, Kyung Tae;Shin, Dong Cho
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.4
    • /
    • pp.33-46
    • /
    • 2020
  • The purpose of Electronic warfare is to disturbe, neutralize, attack, and destroy the opponent's electronic warfare weapon system or equipment. Suppression of Enemy Air Defense (SEAD) mission is aimed at incapacitating, destroying, or temporarily deteriorating air defense networks such as enemy surface-to-air missiles (SAMs), which is a representative mission supported by electronic warfare. This paper develops a simulator for analyzing the effectiveness of SEAD missions under electronic warfare support using C++ language based on the DEVS (Discrete Event Systems Specification) model, the usefulness of which has been proved through case analysis with examples. The SEAD mission of the friendly forces is carried out in parallel with SSJ (Self Screening Jamming) electronic warfare under the support of SOJ (Stand Off Jamming) electronic warfare. The mission is assumed to be done after penetrating into the enemy area and firing HARM (High Speed Anti Radiation Missile). SAM response is assumed to comply mission under the degraded performance due to the electronic interference of the friendly SSJ and SOJ. The developed simulator allows various combinations of electronic warfare equipment specifications (parameters) and operational tactics (parameters or algorithms) to be input for the purpose of analysis of the effect of these combinations on the mission effectiveness.

A Methodology of AI Learning Model Construction for Intelligent Coastal Surveillance (해안 경계 지능화를 위한 AI학습 모델 구축 방안)

  • Han, Changhee;Kim, Jong-Hwan;Cha, Jinho;Lee, Jongkwan;Jung, Yunyoung;Park, Jinseon;Kim, Youngtaek;Kim, Youngchan;Ha, Jeeseung;Lee, Kanguk;Kim, Yoonsung;Bang, Sungwan
    • Journal of Internet Computing and Services
    • /
    • v.23 no.1
    • /
    • pp.77-86
    • /
    • 2022
  • The Republic of Korea is a country in which coastal surveillance is an imperative national task as it is surrounded by seas on three sides under the confrontation between South and North Korea. However, due to Defense Reform 2.0, the number of R/D (Radar) operating personnel has decreased, and the period of service has also been shortened. Moreover, there is always a possibility that a human error will occur. This paper presents specific guidelines for developing an AI learning model for the intelligent coastal surveillance system. We present a three-step strategy to realize the guidelines. The first stage is a typical stage of building an AI learning model, including data collection, storage, filtering, purification, and data transformation. In the second stage, R/D signal analysis is first performed. Subsequently, AI learning model development for classifying real and false images, coastal area analysis, and vulnerable area/time analysis are performed. In the final stage, validation, visualization, and demonstration of the AI learning model are performed. Through this research, the first achievement of making the existing weapon system intelligent by applying the application of AI technology was achieved.

Design and Implementation of Interface System for Swarm USVs Simulation Based on Hybrid Mission Planning (하이브리드형 임무계획을 고려한 군집 무인수상정 시뮬레이션 시스템의 연동 인터페이스 설계 및 구현)

  • Park, Hee-Mun;Joo, Hak-Jong;Seo, Kyung-Min;Choi, Young Kyu
    • Journal of the Korea Society for Simulation
    • /
    • v.31 no.3
    • /
    • pp.1-10
    • /
    • 2022
  • Defense fields widely operate unmanned systems to lower vulnerability and enhance combat effectiveness. In the navy, swarm unmanned surface vehicles(USVs) form a cluster within communication range, share situational awareness information among the USVs, and cooperate with them to conduct military missions. This paper proposes an interface system, i.e., Interface Adapter System(IAS), to achieve inter-USV and intra-USV interoperability. We focus on the mission planning subsystem(MPS) for interoperability, which is the core subsystem of the USV to decide courses of action such as automatic path generation and weapon assignments. The central role of the proposed system is to exchange interface data between MPSs and other subsystems in real-time. To this end, we analyzed the operational requirements of the MPS and identified interface messages. Then we developed the IAS using the distributed real-time middleware. As experiments, we conducted several integration tests at swarm USVs simulation environment and measured delay time and loss ratio of interface messages. We expect that the proposed IAS successfully provides bridge roles between the mission planning system and other subsystems.

Characteristics of Lead isotope ratios and Trace elements of Excavated Bronze weapons in Pre-historical Age (선사시대 출토 청동 무기류의 납동위원소비 및 미량원소 특성)

  • Kim, So Jin;Hwang, Jin Ju;Han, Woo Rim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.4
    • /
    • pp.219-226
    • /
    • 2021
  • We examined component analysis and lead isotope ratio analysis to find out the relationship between the excavation and the production site of 25 bronze weapons from prehistoric ages. All 25 bronze weapons are ternary alloys of copper-tin-lead and lead is artificially added. The lead isotope ratios of 25 bronze weapons show that bronze are made by raw materials in the southern regions of the Korean Peninsula, including northern China. The raw materials of narrow-shaped bronze dagger are supplied in zone 1-3 and northern China. In addition, provenance of lead for bronze halberd and pearhead are the rest of the region except for zone 1 and zone 4. Silver are enriched in most samples and zinc and cobalt are deficient. Arsenic and antimony detected only specific samples and can be used as critical parameter for provenance study. Lead isotopes and trace elements of archaeological bronzes will provide conservation scientist with useful tool to study the provenance of raw materials

A Study on Proving RMF A&A in Real World for Weapon System Development (무기체계 개발을 위한 RMF A&A의 실증에 관한 연구)

  • Cho, Kwangsoo;Kim, Seungjoo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.4
    • /
    • pp.817-839
    • /
    • 2021
  • To manage software safely, the military acquires and manages products in accordance with the RMF A&A. RMF A&A is standard for acquiring IT products used in the military. And it covers the requirements, acquisition through evaluation and maintenance of products. According to the RMF A&A, product development activities should reflect the risks of the military. In other words, developers have mitigated the risks through security by design and supply chain security. And they submit evidence proving that they have properly comply with RMF A&A's security requirements, and the military will evaluate the evidence to determine whether to acquire IT product. Previously, case study of RMF A&A have been already conducted. But it is difficult to apply in real-world, because it only address part of RMF A&A and detailed information is confidential. In this paper, we propose the evidence fulfilling method that can satisfy the requirements of the RMF A&A. Furthermore, we apply the proposed method to real-world drone system for verifying our method meets the RMF A&A.

A Study on Conservation and Desalination for Iron Weapons During the Korean War from DMZ (비무장지대 한국전쟁 전사자 유해발굴 수습 철제 총기류의 보존처리와 탈염처리 방법 고찰)

  • Jo, Ha Nui;Nam, Do Hyeon;Kim, Mi Hyun;Lee, Jae Sung
    • Journal of Conservation Science
    • /
    • v.37 no.6
    • /
    • pp.821-830
    • /
    • 2021
  • The weapons excavated from the de-militarized zones (DMZ) of Korea are vulnerable to corrosion due to the immediate and drastic environmental change. Especially, the chloride ions (Cl-) in iron weapons cause active corrosion and require removal. In this study, conservation treatment and de-salination was performed for the discovered weapons from excavation sites of soldiers killed in action during the Korean War. Furthermore, an attempt was made to prepare the most stable plan for conservation treatment through the comparative study of soaking weapons in distilled water without chemicals and in a solution of sodium (SSC) at different temperatures. In the preliminarily experiments, the comparison of the eluted Cl- ions according to different conditions of de-salination showed that the highest number of ions were detected from the de-salination with SSC at a temperature of 100℃, and its duration was much smaller, i.e., 1~2 weeks. Accordingly, for the parts from the guns and rifles amongst other objects, a six-time de-salination was conducted in the SSC solution for 8 hours at 100℃ and subsequently, for 16 hours at room temperature during which the distilled water and SSC were exchanged every week. However, in the case of a loaded rifle, the de-salination was not conducted, considering the risk that the high temperature and pressure by impregnation in vacuum could cause an explosion

Implementation and Verification for the Low RCS Characteristics of Active Phased Array Antenna (능동위상배열 안테나의 저피탐 특성 구현 및 검증)

  • Joung-Myoung Joo;;Heeduck Chae;Jongkuk Park;Young-Jo Choi;Hyeong-Ki Lee;Jeongyun Han;Jeong-Hwan Jeon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.87-94
    • /
    • 2023
  • As the latest weapon systems and electronic equipments are increasingly demanding stealth technology to improve the survivability of allies, it is necessary to implement low-observability technology that reduces the radar cross section(RCS). In order to implement this stealth technology, a method for low RCS characteristics by applying a shape design or a electromagnetic wave absorber is widely used. However, active phased array antennas have structural limitations in shape design, also when a absorber is applied to it, the performance of the antenna is degraded. Therefore, in this paper, in order to realize the low RCS characteristics of the active phased array antenna operating in the X-band, individual radiating elements suitable for applying the radio wave absorber were selected, and a 13x13 array antenna was designed and manufactured. Next, by comparing the measured results of the relative RCS and electrical performance for the manufactured antenna according to the presence and type of the absorber, it is shown that the electrical performance is maintained at an equal or higher level while obtaining the low RCS characteristics. Thereby the method proposed in this paper for implementing the low RCS characteristics was validated. Finally, it was confirmed that when the wave absorber is applied to the array antenna, the limitation of its performance deterioration can be overcome.

A Technology on the Framework Design of Virtual based on the Synthetic Environment Test for Analyzing Effectiveness of the Weapon Systems of Underwater Engagement Model (수중대잠전 교전모델의 무기체계 효과도 분석을 위한 합성환경기반 가상시험 프레임워크 설계 기술)

  • Hong, Jung-Wan;Park, Yong-Min;Park, Sang-C.;Kwon, Yong-Jin(James)
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.291-299
    • /
    • 2010
  • As recent advances in science, technology and performance requirements of the weapons system are getting highly diversified and complex, the performance requirements also get stringent and strict. Moreover, the weapons system should be intimately connected with other systems such as watchdog system, command and control system, C4I system, etc. However, a tremendous amount of time, cost and risk being spent to acquire new weapons system, and not being diminished compared to the rapid pace of its development speed. Defense Modeling and Simulation(M&S) comes into the spotlight as an alternative to overcoming these difficulties as well as constraints. In this paper, we propose the development process of virtual test framework based on the synthetic environment as a tool to analyze the effectiveness of the weapons system of underwater engagement model. To prove the proposed concept, we develop the test-bed of virtual test using Delta3D simulation engine, which is open source S/W. We also design the High Level Architecture and Real-time Infrastructure(HLA/RTI) based Federation for the interoperation with heterogeneous simulators. The significance of the study entails (1)the rapid and easy development of simulation tools that are customized for the Korean Theater of War; (2)the federation of environmental entities and the moving equations of the combat entities to manifest a realistic simulation.