• Title/Summary/Keyword: Weaning piglet house

Search Result 4, Processing Time 0.021 seconds

Necessary Conditions for Optimal Ventilation of Small Windowless Piglet House with Negative Tunnel Ventilating System (소규모 음압터널환기방식 무창자돈사의 최적 환기 요건에 관한 연구)

  • Lee, Seung-Joo;Chang, Dong-Il;Gutierrez, Winson M.;Park, Jeong-Sik;Jeon, Sang-Hoon;Cho, Hyoung-Je;Oh, Kwon-Young;Chang, Hong-Hee
    • Journal of Biosystems Engineering
    • /
    • v.34 no.1
    • /
    • pp.63-68
    • /
    • 2009
  • This study was carried out to determine necessary conditions for optimal ventilation of small windowless piglet house (5.2 (W) ${\times}$ 12.3 (L) ${\times}$ 2.3 (H) m) with negative tunnel ventilating system using CFD (Computational Fluid Dynamics) simulation. The weaning piglet house for this experiment was consisted of 4 rooms (520 (W) ${\times}$ 300 (L) cm), 3 fences (70 (H) cm), 1 air inlet (350 (W) ${\times}$ 2 (H) cm) and 1 exhaust fan (50 (D) cm), and simulated using CFD code, FLUENT. The simulation results for the original weaning piglet house showed ununiform ventilation for each room. Therefore, to uniformly ventilate all rooms, the heights of the air inlet and first fence were modified to 3 cm and 100 cm, respectively. The simulation result f3r the modified weaning piglet house showed uniform ventilation for all rooms and the optimum air inlet velocity of 1.4 m/s.

Necessary Conditions for Optimal Ventilation of Small Negative Pressure Ventilating Piglet House with Corridor and Attic for Preheating (소규모 복도-더그매 예열 음압환기방식 무창자돈사의 최적 환기 요건에 관한 연구)

  • Lee, Seung-Joo;Chang, Dong-Il;Hwang, Seon-Ho;Gutierrez, Winson M.;Chang, Hong-Hee
    • Journal of Biosystems Engineering
    • /
    • v.35 no.6
    • /
    • pp.434-442
    • /
    • 2010
  • This study was carried out to determine necessary conditions for optimal ventilation of small windowless piglet house (4.0 (W) $\times$ 11.0 (L) $\times$ 2.6(H) m) with corridor and attic for preheating using CFD (Computational Fluid Dynamics) simulation. The experimental weaning piglet house was consisted of a corridor, an attic, 4 rooms (3.0 (W) $\times$ 2.75(L) m), 3 fences (0.7(H) m), 5 air inlets and 2 exhaust fans (0.4 (D) m) and simulated using CFD code, FLUENT. The simulation results for the experimental weaning piglet house showed that each room was uniformly ventilated under all the experimental conditions and air velocities at 0.1 m above floor are less than 0.15 m/s for 0.75 m/s and 1.0 m/s of air inlet velocity but 0.61 m/s for 1.25 m/s. The simulation results are similar to the measured results. Considering the air flow pattern, ventilating efficiency, air velocity at 0.1 m above floor and cold stress of weaning piglets and so on, the optimum velocity of air inlet might be 1.0 m/s.

Study on Modification of Inside Environment in Windowless Weaning Piglet House (무창이유자돈사의 내부 환경 개선에 관한 연구)

  • Lee, Seung-Joo;Gutierrez, W.M.;Kim, Bong-Sik;Han, Jin-Young;Chang, Dong-Il;Chang, Hong-Hee
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.2
    • /
    • pp.150-155
    • /
    • 2008
  • This study was carried out to determinate the location and the number of air inlet and outlet, optimum air inlet velocity for effective ventilation in windowless weaning piglet house($2.90(W){\times}9.90(L){\times}2.80(H)$ m) by CFD(Computation Fluid Dynamics) simulation. The weaning piglet house for this experiment was consisted of 11 air inlets and 9 outlets, modified and simulated using CFD code, FLUENT. The simulation result for the original weaning piglet house, which was not modified, showed ununiform ventilation for each room. Therefore, for uniform ventilation, 4 air inlets and 1 outlet were completely closed, and 2 air outlets were partially closed. The simulation result for the modified weaning piglet house showed uniform ventilation for each room and the optimum air inlet velocity of 0.5 $m\;sec^{-1}$.

Effects of loose farrowing facilities on reproductive performance in primiparous sows

  • Choi, Yohan;Min, Yejin;Kim, Younghwa;Jeong, Yongdae;Kim, Doowan;Kim, Joeun;Jung, Hyunjung
    • Journal of Animal Science and Technology
    • /
    • v.62 no.2
    • /
    • pp.218-226
    • /
    • 2020
  • The present study investigated the effects of loose farrowing type during gestation and after farrowing on reproductive performance and of lactating sows. A total of 22 primiparous sows (Landrace; average initial body weights [BW], 228.54 ± 12.79 kg) were allotted to one of two treatments on the basis of body weight. Sows were divided into two experimental groups, conventional farrowing crates (CON), and loosed-farrowing pens (LFP). The experiment duration was around 38 days ranging from 10 days before parturition to 28 days after parturition. Gestating sows at the age of 105 d were placed in gestational stalls (group housing). All the sows were fed a common diet according to the National Research Council requirements for lactation. Cross-fostering was performed within 1 day of parturition. From 1 day after weaning, estrus detection was performed twice-daily (0900 and 1730 h) for 10 min by boar exposure. There were significant effects of LFP housing type on the farrowing duration, and farrowing interval. At the farrowing time, none of the litter parameters including total born, stillborn, mummy, born alive piglets and total litter weight and piglet weight were affected. There were no effects of housing type on the mortality of piglets at d 1, 3, 7, 21, and 28. In conclusion, the result of this study showed that there is no performance difference between the crated or LFP sows, which indicate that the LFP housing has the potential to be used as an alternative to the crated house without any detrimental effects in reproduction performance of lactating sows.