• Title/Summary/Keyword: Weak Herz-type Hardy spaces

Search Result 1, Processing Time 0.018 seconds

WEAK HERZ-TYPE HARDY SPACES WITH VARIABLE EXPONENTS AND APPLICATIONS

  • Souad Ben Seghier
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.1
    • /
    • pp.33-69
    • /
    • 2023
  • Let α ∈ (0, ∞), p ∈ (0, ∞) and q(·) : ℝn → [1, ∞) satisfy the globally log-Hölder continuity condition. We introduce the weak Herz-type Hardy spaces with variable exponents via the radial grand maximal operator and to give its maximal characterizations, we establish a version of the boundedness of the Hardy-Littlewood maximal operator M and the Fefferman-Stein vector-valued inequality on the weak Herz spaces with variable exponents. We also obtain the atomic and the molecular decompositions of the weak Herz-type Hardy spaces with variable exponents. As an application of the atomic decomposition we provide various equivalent characterizations of our spaces by means of the Lusin area function, the Littlewood-Paley g-function and the Littlewood-Paley $g^*_{\lambda}$-function.