• Title/Summary/Keyword: Wavelet-based neural network

Search Result 185, Processing Time 0.027 seconds

Self-Recurrent Wavelet Neural Network Based Adaptive Backstepping Control for Steering Control of an Autonomous Underwater Vehicle (수중 자율 운동체의 방향 제어를 위한 자기회귀 웨이블릿 신경회로망 기반 적응 백스테핑 제어)

  • Seo, Kyoung-Cheol;Yoo, Sung-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.406-413
    • /
    • 2007
  • This paper proposes a self-recurrent wavelet neural network(SRWNN) based adaptive backstepping control technique for the robust steering control of autonomous underwater vehicles(AUVs) with unknown model uncertainties and external disturbance. The SRWNN, which has the properties such as fast convergence and simple structure, is used as the uncertainty observer of the steering model of AUV. The adaptation laws for the weights of SRWNN and reconstruction error compensator are induced from the Lyapunov stability theorem, which are used for the on-line control of AUV. Finally, simulation results for steering control of an AUV with unknown model uncertainties and external disturbance are included to illustrate the effectiveness of the proposed method.

Recognition of Plasma- Induced X-Ray Photoelectron Spectroscopy Fault Pattern Using Wavelet and Neural Network (웨이블렛과 신경망을 이용한 플라즈마-유도 X-Ray Photoelectron Spectroscopy 고장 패턴의 인식)

  • Kim, Soo-Youn;Kim, Byung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.135-137
    • /
    • 2006
  • To improve device yield and throughput, faults in plasma processing equipment should be quickly and accurately diagnosed. Despite many useful information of ex-situ sensor measurements, their applications to recognize plasma faultshave not been investigated. In this study, a new technique to identify fault causes by recognizing X-ray photoelectron spectroscopy (XPS) using neural network and continuous wavelet transformation (CWT). The presented technique was evaluated with the plasma etch data. A totalof 17 experiments were conducted for model construction. Model performance was investigated from the perspectives of training error, testing error, and recognition accuracy with respect to various thresholds. CWT-based BPNN models demonstrated a higher prediction accuracy of about 26%. Their advantages over pure XPS-based models were conspicuous in all three measures at small networks.

  • PDF

Direct Adaptive Control of Chaotic Systems Using a Wavelet Neural Network

  • Choi, Jong-Tae;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2187-2189
    • /
    • 2003
  • This paper presents a design method of the wavelet neural network(WNN) controller based on a direct adaptive control scheme for the intelligent control of chaotic systems. The conventional control methods such as optimal control, adaptive control and robust control may not be feasible when an explicit, faithful mathematical model cannot be constructed. Therefore, an intelligent control system that is an on-line trained WNN controller based on a direct adaptive control method is proposed to control chaotic systems whose mathematical models are not available. The gradient-descent method is used for training a wavelet neural network controller. Finally, the effectiveness and feasibility of the proposed control method is demonstrated with applications to the chaotic system.

  • PDF

Void detection for tunnel lining backfill using impact-echo method based on continuous wavelet transform and convolutional neural network

  • Jiyun Lee;Kyuwon Kim;Meiyan Kang;Eun-Soo Hong;Suyoung Choi
    • Geomechanics and Engineering
    • /
    • v.36 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • We propose a new method for detecting voids behind tunnel concrete linings using the impact-echo method that is based on continuous wavelet transform (CWT) and a convolutional neural network (CNN). We first collect experimental data using the impact-echo method and then convert them into time-frequency images via CWT. We provide a CNN model trained using the converted images and experimentally confirm that our proposed model is robust. Moreover, it exhibits outstanding performance in detecting backfill voids and their status.

Internal Fault Classification in Transformer Windings using Combination of Discrete Wavelet-Transforms and Back-propagation Neural Networks

  • Ngaopitakkul Atthapol;Kunakorn Anantawat
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.3
    • /
    • pp.365-371
    • /
    • 2006
  • This paper presents an algorithm based on a combination of Discrete Wavelet Transforms and neural networks for detection and classification of internal faults in a two-winding three-phase transformer. Fault conditions of the transformer are simulated using ATP/EMTP in order to obtain current signals. The training process for the neural network and fault diagnosis decision are implemented using toolboxes on MATLAB/Simulink. Various cases and fault types based on Thailand electricity transmission and distribution systems are studied to verify the validity of the algorithm. It is found that the proposed method gives a satisfactory accuracy, and will be particularly useful in a development of a modern differential relay for a transformer protection scheme.

Adaptive Wavelet Neural Network Based Wind Speed Forecasting Studies

  • Chandra, D. Rakesh;Kumari, Matam Sailaja;Sydulu, Maheswarapu;Grimaccia, F.;Mussetta, M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1812-1821
    • /
    • 2014
  • Wind has been a rapidly growing renewable power source for the last twenty years. Since wind behavior is chaotic in nature, its forecasting is not easy. At the same time, developing an accurate forecasting method is essential when wind farms are integrated into the power grid. In fact, wind speed forecasting tools can solve issues related to grid stability and reserve allocation. In this paper 30 hours ahead wind speed profile forecast is proposed using Adaptive Wavelet Neural Network (AWNN). The implemented AWNN uses a Mexican hat mother Wavelet, and Morlet Mother Wavelet for seven, eight and nine levels decompositions. For wind speed forecasting, the time series data on wind speed has been gathered from the National Renewable Energy Laboratory (NREL) website. In this work, hourly averaged 10-min wind speed data sets for the year 2004 in the Midwest ISO region (site number 7263) is taken for analysis. Data sets are normalized in the range of [-1, 1] to improve the training performance of forecasting models. Total 8760 samples were taken for this forecasting analysis. After the forecasting phase, statistical parameters are calculated to evaluate system accuracy, comparing different configurations.

Self-Recurrent Neural Network Based Sliding Mode Control of Biped Robot (이족 로봇을 위한 자기 회귀 신경 회로망 기반 슬라이딩 모드 제어)

  • Lee, Sin-Ho;Park, Jin-Bae;Choi, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1860-1861
    • /
    • 2006
  • In this paper, we design a robust controller of biped robot system with uncertainties, using recurrent neural network. In our proposed control system, we use the self-recurrent wavelet neural network (SRWNN). The SRWNN makes up for the weak points in wavelet neural network(WNN). While the WNN has fast convergence ability, it dose not have a memory. So the WNN cannot confront unexpected change of the system. However, the SRWNN, having advantage of WNN such as fast convergence, can easily encounter the unexpected change of the system. For stable walking control of biped robot, we use sliding mode control (SMC). Here, uncertainties are predicted by SRWNN. The weights of SRWNN are trained by adaptive laws based on Lyapunov stability theorem. Finally, we carry out computer simulations with a biped robot model to verify the effectiveness of the proposed control system,.

  • PDF

A Wavelet-Based Neural Network System for Power Disturbance of Recognition and Classification (전원왜란의 인지와 분류를 위한 웨이블릿을 기반으로한 뉴럴네트웍 시스템)

  • Kim, Hong-Kyun;Lee, Jin-Mok;Choi, Jea-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.69-71
    • /
    • 2005
  • This paper presents a wavelet-based neural network technology for the detection and classification of the short durations type of power quality disturbances. Transients happen during very short durations to the nano- and microsecond. Thus, a method for detecting and classifying transient signals at the same time and in an automatic combines the properties of the wavelet transform and the advantages of neural networks. Especially, the additional feature extraction to improve the recognition rate is considered. The configuration of the hardware of TMS320C6711 DSP based with 16 channel 20Mhz sampling rate A/D(Analog to Digital) converter and some case studies are described.

  • PDF

A Power Disturbance Classification System using Wavelet-Based Neural Network (웨이블릿 기반의 뉴럴네트웍을 이용한 전원의 왜란분류 시스템)

  • Kim, Hong-Kyun;Lee, Jin-Mok;Choi, Jae-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.487-489
    • /
    • 2005
  • This paper presents a wavelet-based neural network technology for the detection and classification of the short durations type of power quality disturbances. Transients happen during very short durations to the nano- and microsecond. Thus, a method for detecting and classifying transient signals at the same time and In an automatic combines the properties of the wavelet transform and the advantages of neural networks. Especially, the additional feature extraction to improve the recognition rate is considered. The configuration of the hardware of TMS320C6711 DSP based with 16 channel 20Mhz sampling rate A/D(Analog to Digital) converter and some case studies are described.

  • PDF

Prediction of Etch Profile Uniformity Using Wavelet and Neural Network

  • Park, Won-Sun;Lim, Myo-Taeg;Kim, Byungwhan
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.2
    • /
    • pp.256-262
    • /
    • 2004
  • Conventionally, profile non-uniformity has been characterized by relying on approximated profile with angle or anisotropy. In this study, a new non-uniformity model for etch profile is presented by applying a discrete wavelet to the image obtained from a scanning electron microscopy (SEM). Prediction models for wavelet-transformed data are then constructed using a back-propagation neural network. The proposed method was applied to the data collected from the etching of tungsten material. Additionally, 7 experiments were conducted to obtain test data. Model performance was evaluated in terms of the average prediction accuracy (APA) and the best prediction accuracy (BPA). To take into account randomness in initial weights, two hundred models were generated for a given set of training factors. Behaviors of the APA and BPA were investigated as a function of training factors, including training tolerance, hidden neuron, initial weight distribution, and two slopes for bipolar sig-moid and linear function. For all variations in training factors, the APA was not consistent with the BPA. The prediction accuracy was optimized using three approaches, the best model based approach, the average model based approach and the combined model based approach. Despite the largest APA of the first approach, its BPA was smallest compared to the other two approaches.