• Title/Summary/Keyword: Wavelet 기법

Search Result 755, Processing Time 0.019 seconds

A Encryption Technique of JPEG2000 Image Using 3-Dimensional Chaotic Cat Map (3차원 카오스 캣맵을 이용한 JPEG2000 영상의 암호화 기술)

  • Choi, Hyun-Jun;Kim, Soo-Min;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.173-180
    • /
    • 2005
  • In this paper, we proposed the image hiding method which decreases calculation amount by encrypt partial data using discrete wavelet transform(DWT) and linear scale quantization which were adopted as the main technique for frequency transform in JPEG2000 standard. Also we used the chaotic system and cat map which has smaller calculation amount than other encryption algorithms and then dramatically decreased calculation amount. This method operates encryption process between quantization and entropy coding for preserving compression ratio of images and uses the subband selection method. Also, suggested encryption method to JPEG2000 progressive transmission. The experiments have been performed with the Proposed methods implemented in software for about 500 images. Consequently, we are sure that the proposed is efficient image encryption methods to acquire the high encryption effect with small amount of encryption. It has been shown that there exits a relation of trade-off between the execution time and the effect of the encryption. It means that the proposed methods can be selectively used according to the application areas.

Digital Modulation Types Recognition using HOS and WT in Multipath Fading Environments (다중경로 페이딩 환경에서 HOS와 WT을 이용한 디지털 변조형태 인식)

  • Park, Cheol-Sun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.5
    • /
    • pp.102-109
    • /
    • 2008
  • In this paper, the robust hybrid modulation type classifier which use both HOS and WT key features and can recognize 10 digitally modulated signals without a priori information in multipath fading channel conditions is proposed. The proposed classifier developed using data taken field measurements in various propagation model (i,e., rural area, small town and urban area) for real world scenarios. The 9 channel data are used for supervised training and the 6 channel data are used for testing among total 15 channel data(i.e., holdout-like method). The Proposed classifier is based on HOS key features because they are relatively robust to signal distortion in AWGN and multipath environments, and combined WT key features for classifying MQAM(M=16, 64, 256) signals which are difficult to classify without equalization scheme such as AMA(Alphabet Matched Algorithm) or MMA(Multi-modulus Algorithm. To investigate the performance of proposed classifier, these selected key features are applied in SVM(Support Vector Machine) which is known to having good capability of classifying because of mapping input space to hyperspace for margin maximization. The Pcc(Probability of correct classification) of the proposed classifier shows higher than those of classifiers using only HOS or WT key features in both training channels and testing channels. Especially, the Pccs of MQAM 3re almost perfect in various SNR levels.

An Electromagnetic Shock Wave Generator Employing a Solenoid Coil for Extracorporeal Shock Wave Therapy: Construction and Acoustical Properties (체외 충격파 치료술을 위한 솔레노이드 코일을 이용한 전자기식 충격파 발생기: 구성 및 음향학적 특성)

  • Choi Min Joo;Lee Jong Soo;Kang Gwan Suk;Paeng Dong Guk;Lee Yoon Joon;Cho Chu Hyun;Rim Geun Hie
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.5
    • /
    • pp.271-281
    • /
    • 2005
  • An electromagnetic type shock wave generator suitable for extracorporeal shock wave therapy has been constructed by employing a solenoid coil. The Property of the shock waves produced by the shock wave generator was evaluated using a needle hydrophone. It was shown that, as the capacitor discharging voltage increased from 8 to 18 kV, the Positive Peak Pressure (P+) of the shock wave increased non-linearly from 10 to 77 Wa. In contrast. the negative peak Pressure (f) varied between -3.2 and -6.8 MPa. had its absolute maximum of -6.9 ma at 14 kV The peak amplitudes P+ measured repeatedly under the same voltage setting varied within $5\;\%$ from mean values and this is very small compared to about $50\;\%$ for electrohydraulic type shock wave generators. It could be observed, from the hydrophone signal recorded over 1 ms. several sequential acoustic impulses representing bubble collapses. namely. acoustic cavitation. induced by the shock wave. A technique based on wavelet transformation was used to accurately measure the time delay between the 1st and 2nd collapse known to be closely related to the shock strength. It was observed that the measured time delay increased almost linearly from 120 to $700\;{\mu}s$ with the shock wave Pressure P+ increasing from 10 to 77 MPa.

A Fuel Cell Generation Modeling and Interconnected Signal Analysis using PSCAD/EMTDC (연료전지 발전시스템의 PSCAD/EMTDC 모델링 및 계통연계에 따른 전력신호 분석에 관한 연구)

  • Choi, Sang-Yule;Park, Jee-Woong;Lee, Jong-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.5
    • /
    • pp.21-30
    • /
    • 2008
  • The fuel cell generation convert fuel source, and gas directly to electricity in an electro-chemical process. Unlike traditional and conventional turbine engines, the process of fuel cell generation do not burn the fuel and run pistons or shafts, and it has not revolutionary machine, so have fewer efficiency losses, low emissions and no noisy moving parts. A high power density allows fuel cells to be relatively compact source of electric power, beneficial in application with space constraints. In this system, the fuel cell itself is nearly small-sized by other components of the system such as the fuel reformer and power inverter. So, the fuel cell energy's stationary fuel cells produce reliable electrical power for commercial and industrial companies as well as utilities. In this paper, a fuel cell system has been modeled using PSCAD/EMTDC to analyze its electric signals and characteristics. Also the power quality of the fuel cell system has been evaluated and the problems which can be occurred during its operation have been studied by modeling it more detailed. Particularly, we have placed great importance on its power quality and signal characteristics when it is connected with a power grid.

Estimation and Mapping of Soil Organic Matter using Visible-Near Infrared Spectroscopy (분광학을 이용한 토양 유기물 추정 및 분포도 작성)

  • Choe, Eun-Young;Hong, Suk-Young;Kim, Yi-Hyun;Zhang, Yong-Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.968-974
    • /
    • 2010
  • We assessed the feasibility of discrete wavelet transform (DWT) applied for the spectral processing to enhance the estimation performance quality of soil organic matters using visible-near infrared spectra and mapped their distribution via block Kriging model. Continuum-removal and $1^{st}$ derivative transform as well as Haar and Daubechies DWT were used to enhance spectral variation in terms of soil organic matter contents and those spectra were put into the PLSR (Partial Least Squares Regression) model. Estimation results using raw reflectance and transformed spectra showed similar quality with $R^2$ > 0.6 and RPD> 1.5. These values mean the approximation prediction on soil organic matter contents. The poor performance of estimation using DWT spectra might be caused by coarser approximation of DWT which not enough to express spectral variation based on soil organic matter contents. The distribution maps of soil organic matter were drawn via a spatial information model, Kriging. Organic contents of soil samples made Gaussian distribution centered at around 20 g $kg^{-1}$ and the values in the map were distributed with similar patterns. The estimated organic matter contents had similar distribution to the measured values even though some parts of estimated value map showed slightly higher. If the estimation quality is improved more, estimation model and mapping using spectroscopy may be applied in global soil mapping, soil classification, and remote sensing data analysis as a rapid and cost-effective method.